546.

Problem 40.11 (RHK)

A parallel-plate capacitor with circular plates 21.6 cm in diameter is being charged. The displacement current density throughout the region is uniform, into the paper in the diagram, and has a value of $1.87 \mathrm{~mA} \mathrm{~cm}^{-2}$. We have to calculate (a) the magnetic field B at a distance $r=53.0 \mathrm{~mm}$ from the axis of symmetry of the region. (b) We have to calculate $d E / d t$ in this region.

Solution:

(a)

Ampere's law as extended by Maxwell is

$$
\begin{aligned}
\int_{\mathbb{N}}^{\mathrm{r}} \cdot d \stackrel{\mathrm{r}}{\mathrm{r}} & =\mu_{0} i+\mu_{0} \varepsilon_{0} \frac{d \Phi_{E}}{d t} \\
& =\mu_{0} i+\mu_{0} i_{d}
\end{aligned}
$$

Where

(displacement current) $i_{d}=\varepsilon_{0} \frac{d \Phi_{E}}{d t}$.
There will not be conduction current between the plates of a capacitor; therefore, in this region magnetic field will be due to the displacement current only. We consider an Amperian loop of radius $r=53.0 \mathrm{~mm}$. Applying the Maxwell modified Ampere's law, we get $B \times\left(2 \pi \times 53.0 \times 10^{-3}\right)=\mu_{0}\left(\frac{1.87 \times 10^{-3}}{10^{-4}} \times \pi \times\left(53.0 \times 10^{-3}\right)^{2}\right)$,
or

$$
\begin{aligned}
B & =\mu_{0} \times \frac{1.87 \times 10}{2} \times 53.0 \times 10^{-3} \mathrm{~T} \\
& =\left(4 \pi \times 10^{-7}\right) \times 1.87 \times 5 \times 53.0 \times 10^{-3} \mathrm{~T}=623 \mathrm{nT}
\end{aligned}
$$

(b)

We calculate next $d E / d t$ in this region.
$\varepsilon_{0} \frac{d E}{d t}=\frac{1.87 \times 10^{-3}}{10^{-4}} \mathrm{~A} \mathrm{~m}^{-2}$,
or

$$
\begin{aligned}
\frac{d E}{d t}=\frac{18.7}{\varepsilon_{0}} \mathrm{~V} \mathrm{~m}^{-1} \mathrm{~s}^{-1} & =\frac{18.7}{8.854 \times 10^{-12}} \mathrm{~V} \mathrm{~m}^{-1} \mathrm{~s}^{-1} \\
& =2.11 \times 10^{12} \mathrm{Vm}^{-1} \mathrm{~s}^{-1} .
\end{aligned}
$$

