542.

Problem 39.37 (RHK)

The AC generator shown in the figure supplies 170 V (max) at 60 Hz . With the switch open as in the diagram, the resulting current leads the generator emf by 20^{0}. With the switch in position 1 the current lags the generator emf by 10°. When the switch is in position 2 the maximum current is 2.82 A . We have to find the values of R, L, and C.

Solution:

Let the AC emf and the current in the circuit be described by the functions
$\mathrm{E}=\mathrm{E}_{m} \sin \omega t$,
and
$i=i_{m} \sin (\omega t-\phi)$.

The phase angle ϕ is given in terms of the values of the circuit components R, L, and C, and the angular frequency ω by the relation

$$
\tan \phi=\frac{\omega L-1 / \omega C}{R} .
$$

With the switch open as in the diagram, the resulting current leads the generator emf by 20°. Therefore, $\tan \left(-20^{\circ}\right)=\frac{\omega L-1 / \omega C}{R}$,
or
$-0.364 R=\omega L-1 / \omega C$.
(A)

It is given that when the switch in position 1 the current lags the generator emf by 10°. Therefore,
$\tan \left(10^{\circ}\right)=\frac{\omega L-1 / 2 \omega C}{R}$,
or
$0.176 R=\omega L-1 / 2 \omega C$.
The additional data is that when the switch is in position 2 the maximum current is 2.82 A . This implies that $\frac{170}{|(L \omega-1 / C \omega)|}=2.82$,
or

$$
\begin{equation*}
|(L \omega-1 / C \omega)|=\frac{170}{2.82} \Omega=60.28 \Omega . \tag{C}
\end{equation*}
$$

From equations (C) and (A), we find the value of the resistance R. We find
$R=\frac{60.28}{0.364} \Omega=165.6 \Omega$.
Substituting the value of R in (B), we get $\omega L-1 / 2 \omega C=0.176 \times 165.6 \Omega=29.15 \Omega$.

Substituting the value of R in (A), we get
$1 / \omega C-L \omega=60.28 \Omega$,
$\therefore \frac{1}{2 C \omega}=(60.28+29.15) \Omega=89.43 \Omega$,
and
$C=\frac{1}{2 \times(2 \pi) \times 60 \times 89.43} \mathrm{~F}=14.8 \mu \mathrm{~F}$.
And,
$L \omega=118.58 \Omega$,
$\therefore L=\frac{118.58}{2 \times(2 \pi) \times 60} \mathrm{H}=315 \mathrm{mH}$.

