539. 

## Problem 39.29 (RHK)

We have to show that in the circuit shown in the figure the power dissipated in the resistance $R$ is maximum when $R=r$, in which $r$ is the internal resistance of the $A C$ generator.


## Solution:

Let the emf of the $A C$-generator be
$\mathrm{E}=\mathrm{E}_{n} \sin \omega t$.
As the total resistance in the resistance in the circuit is
$R+r$, the current $i$ in the circuit will be
$i=\left(\frac{\mathrm{E}_{\mathrm{m}}}{R+r}\right) \sin \omega t$.
The average power dissipated in the circuit will be
$\bar{P}=i_{r m s}^{2} R=\frac{1}{2} \times\left(\frac{\mathrm{E}_{m}}{R+r}\right)^{2} R$.
The function $\bar{P}(R)$ will have an extremum at $R$ for which
$\frac{d \bar{P}}{d R}=0$.
This condition gives
$\frac{1}{(R+r)^{2}}-\frac{2 R}{(R+r)^{3}}=0$,
or
$R+r-2 R=0$,
or
$R=r$.
By calculating $\left.\frac{d^{2} \bar{P}(R)}{d R^{2}}\right|_{R=r}$, we will show that it is $<0$,
and therefore $\bar{P}(R=r)$ is a maximum.

$$
\begin{aligned}
\left.\frac{d^{2} \bar{P}(R)}{d R^{2}}\right|_{R=r} & =\frac{1}{2} \mathcal{E}_{m}^{2}\left\{-\frac{2}{(R+r)^{3}}-\frac{2}{(R+r)^{3}}+\frac{6 R}{(R+r)^{4}}\right\}_{R=r} \\
& =-\frac{\mathcal{E}_{m}^{2}}{16 r^{3}}<0 .
\end{aligned}
$$

The power dissipation is maximum when the external load is equal to the load of the generator.

