536.

Problem 39.21 (RHK)

We have to show that the fractional width of the resonance curves in LCR circuits is given, to a close approximation, by

$$
\frac{\Delta \omega}{\omega_{R}}=\frac{\sqrt{3} R}{\omega_{R} L},
$$

in which ω_{R} is the resonant frequency and $\Delta \omega$ is the width of the resonance peak at $i=i_{m} / 2$. Note that this expression may be writtenjs: $\sqrt{3} Q$, which shows that clearly that a "high- ${ }^{2}$ circuit has a sharp resonance peak, that is, a small value of $\Delta \omega / \omega_{R}$.

Solution:

Let an $L C R$ circuit be driven by a sinusoidal emf
$\mathrm{E}=\mathrm{E}_{n} \sin \omega t$,
and let the current in the circuit be given by the function $i=i_{m} \sin (\omega t-\phi)$.

In an $L C R$ circuit the current amplitude and the emf amplitude are related to each other by the impedance
$Z=\sqrt{R^{2}+(L \omega-1 / C \omega)^{2}}$,
as
$i_{m}=\frac{\mathrm{E}_{m}}{\sqrt{R^{2}+(L \omega-1 / C \omega)^{2}}}$.
The peak value of i_{m} is E_{m} / R at the resonance frequency
$\omega_{R}=\frac{1}{\sqrt{L C}}$.
Let at frequencies $\omega_{d_{1}}$ and $\omega_{d_{2}}$ the peak current be half of i_{m}, that is $\mathrm{E}_{m} / 2 R$.

We, therefore, have the equation from which the frequencies ω_{d} can be
$\frac{\mathrm{E}_{m}}{2 R}=\frac{\mathrm{E}_{m}}{\sqrt{R^{2}+\left(L \omega_{d}-1 / C \omega_{d}\right)^{2}}}$
or
$R^{2}+\left(L \omega_{d}-1 / C \omega_{d}\right)^{2}=4 R^{2}$,
or
$\left(L \omega_{d}-1 / C \omega_{d}\right)= \pm \sqrt{3} R$.
We assume
$\omega_{d}=\omega_{R}+\Delta \omega$, and $\Delta \omega / \omega_{R}=1$.
We thus have the equation
$\omega_{R} L+\Delta \omega L-\frac{1}{C\left(\omega_{R}+\Delta \omega\right)}= \pm \sqrt{3} R$,
Or
$\omega_{R} L+\Delta \omega L-\frac{1}{C \omega_{R}}\left(1-\frac{\Delta \omega}{\omega_{R}}+O\left(\frac{\Delta \omega}{\omega_{R}}\right)^{2}\right)= \pm \sqrt{3} R$,
or
$\omega_{R} L+2 \Delta \omega L-\frac{1}{C \omega_{R}}= \pm \sqrt{3} R$,
or
$\Delta \omega=\frac{ \pm \sqrt{3} R}{2 L}$.
Therefore,
$\omega_{d_{1}}=\omega_{R}-\frac{\sqrt{3} R}{2 L}$, and $\frac{(D)}{\operatorname{cg}_{R}-\frac{\sqrt{3}}{2 L}} \frac{2}{2 L}$.
Therefore, the width of the resonance peak at half maximum is

$$
\frac{\omega_{d_{2}}-\omega_{d_{1}}}{\omega}=\frac{\sqrt{3} R}{L \omega}=\frac{\sqrt{3}}{Q},
$$

where "quality" of an $L C R$ is defined as
$Q=\frac{\omega L}{R}$.

