Problem 39.16 (RHK)

A resistor-inductor-capacitor combination R_1 , L_1 , C_1 , has a resonant frequency that is just the same as that of a different combination R_2 , L_2 , C_2 . The two are next connected in combination in series. We have to show that this new circuit also has the same resonant frequency as the separate individual circuits.

Solution:

The resonant frequencies of the two LCR circuits with circuit elements R_1 , L_1 , C_1 and R_2 , L_2 , C_2 are same.

Therefore,

$$\frac{1}{\sqrt{L_1C_1}} = \frac{1}{\sqrt{L_2C_2}} = \omega .$$

When the two LCR circuits are combined in series the inductance of the combination will be

$$L=L_1+L_2,$$

and the capacitance of the combination will be

$$C = \frac{C_{1}C_{2}}{C_{1} + C_{2}}.$$

Therefore, the resonant frequency of the series combination of the two *LCR* circuits will be

$$\omega' = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(L_1 + L_2)(C_1 C_2/C_1 + C_2)}}$$

$$= \frac{\sqrt{C_1 + C_2}}{\sqrt{(L_1 C_1)C_2 + (L_2 C_2)C_1}}$$

$$= \frac{\sqrt{C_1 + C_2}}{\sqrt{\frac{C_2}{\omega^2} + \frac{C_1}{\omega^2}}} = \omega.$$

Therefore,

The resonant frequency of the series combination of the two LCR circuits each of resonant frequency ω is also ω .