529.

Problem 38.64 (RHK)

In the circuit shown in the figure the $900-\mu \mathrm{F}$ capacitor is initially charged to 100 V and the $100-\mu \mathrm{F}$ is uncharged. We have to describe in detail how one might charge the $100-\mu \mathrm{F}$ capacitor to 300 V by manipulating switches S_{1} and S_{2}.

Solution:

It is given that initially the $900-\mu \mathrm{F}$ capacitor is initially charged to 100 V and the $100-\mu \mathrm{F}$ is uncharged.

Therefore, an amount of energy
$U=\frac{1}{2} C V^{2}=\frac{1}{2} \times 900 \times 10^{-6} \times(100)^{2} \mathrm{~J}=4.5 \mathrm{~J}$
is stored in the $900-\mu \mathrm{F}$ capacitor. The switch S_{2} is closed and the switch S_{1} is kept open for a time interval that will
be determined next. The circuit is then a $L C$-oscillator with frequency
$\omega_{1}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10 \times 900 \times 10^{-6}}} \mathrm{rad} \mathrm{s}^{-1}=10.5 \mathrm{rad} \mathrm{s}^{-1} ;$
period
$T_{1}=\frac{2 \pi}{10.05} \mathrm{~s}=0.596 \mathrm{~s}$.
After a lapse of time equal to $T_{1} / 4=0.149 \mathrm{~s}$ the energy which was initially stored in the $900-\mu \mathrm{F}$ capacitor will be transferred to the 10 H inductor and will be stored in it as magnetic energy. At this stage the switch S_{2} is
opened and the switch S_{1} is closed. We now have a $L C$ oscillator with frequency

$$
\omega_{2}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10 \times 100 \times 10^{-6}}} \mathrm{rad} \mathrm{~s}^{-1}=31.6 \mathrm{rad} \mathrm{~s}^{-1} ;
$$

period

$$
T_{2}=\frac{2 \pi}{31.6} \mathrm{~s}=0.198 \mathrm{~s} .
$$

The energy in the $100-\mu \mathrm{F}$ when its potential is 300 V will be

$$
U^{\prime}=\frac{1}{2} C V^{2}=\frac{1}{2} \times 100 \times 10^{-6} \times(300)^{2} \mathrm{~J}=4.5 \mathrm{~J} .
$$

In time $T_{2} / 4=0.05 \mathrm{~s}$ the 4.5 J energy stored in the inductor will be transferred as electrical energy on to the $100-\mu \mathrm{F}$ capacitor and the potential difference across it then will be 300 V .

