527.

Problem 38.53 (RHK)

An oscillating LC circuit is designed to operate at a peak current of 31 mA . The inductance of 42 mH is fixed and the frequency is varied by changing C. (a) If the capacitor has a maximum peak voltage of 50 V , we have to find whether the circuit can be safely operated at a frequency of 1.0 MHz . (b) We have to find the maximum safe operating frequency. (c) We have to determine the minimum capacitance.

Solution:

(a)

In a $L C$ circuit the variation of charge with time on the capacitor is given by the function

$$
q=q_{m} \cos (\omega t+\phi),
$$

where

$$
\omega=\frac{1}{\sqrt{L C}} .
$$

The variation of the current in the circuit with time is given by the function
$i=\frac{d q}{d t}=-\omega q_{m} \sin (\omega t+\phi)$.
Therefore, the values of the maximum charge and the maximum current are related as
$i_{m}=\omega q_{m}$.
The circuit has been designed to operate at a peak current of 31 mA . Therefore, the maximum safe charge in the circuit at a frequency of 1.0 MHz will be
$q_{m}=\frac{i_{m}}{\omega}=\frac{31 \times 10^{-3}}{2 \pi \times 10^{6}} \quad \mathrm{C}=4.93 \times 10^{-9} \mathrm{C}$.
The inductance of 42 mH is fixed and the frequency is varied by changing C. The capacitance required for operating this system at frequency of 1 MHz can be found from the relation
$\omega=\frac{1}{\sqrt{L C}}$,
or
$C=\frac{1}{4 \pi^{2} v^{2} L}=\frac{1}{4 \pi^{2} \times\left(10^{6}\right)^{2} \times 42 \times 10^{-3}} \mathrm{~F}=6.03 \times 10^{-13} \mathrm{~F}$.
The maximum voltage across the capacitor at this frequency will be

$$
V_{m}=\frac{q_{m}}{C}=\frac{4.93 \times 10^{-9}}{6.03 \times 10^{-13}} \mathrm{~V}=8.17 \times 10^{3} \mathrm{~V}
$$

As the peak voltage rating of the capacitor is 50 V , the circuit cannot be safely operated at 1.0 MHz .
(b)

We will next find the maximum safe operating frequency ω_{m}. We will use the following relations in finding answer to this part of the problem.
$q_{m}=\frac{i_{m}}{\omega_{m}} ; C=\frac{1}{L \omega_{m}{ }^{2}} ;$ and $q_{m}=50 C$.
We therefore have the relation

$$
\frac{i_{m}}{\omega_{m}} \times L \omega_{m}{ }^{2}=50 \mathrm{~V},
$$

or
$\omega_{m}=\frac{50 \mathrm{~V}}{L i_{m}}=\frac{50}{31 \times 10^{-3} \times 42 \times 10^{-3}} \mathrm{rad} \mathrm{s}^{-1}=3.84 \times 10^{4} \mathrm{rad} \mathrm{s}^{-1}$.
And

$$
v_{m}=\frac{\omega_{m}}{2 \pi}=6.11 \times 10^{3} \mathrm{~Hz} .
$$

(c)

The minimum capacitance will therefore be

$$
\begin{aligned}
C_{\min }=\frac{1}{4 \pi^{2} L v_{m}^{2}} & =\frac{1}{4 \pi^{2} \times\left(6.11 \times 10^{3}\right)^{2} \times 42 \times 10^{-3}} \mathrm{~F} \\
& =16.1 \mathrm{nF} .
\end{aligned}
$$

