526.

Problem 38.49 (RHK)

Let us consider the circuit as shown in the figure. With switch S_{1} closed and the other two switches open, the circuit has a time constant τ_{C}. With switch S_{2} closed and the other two switches open, the circuit has time constant τ_{L}. With switch S_{3} closed and the other two switches open, the circuit oscillates with a period T. We have to show that $T=2 \pi \sqrt{\tau_{C} \tau_{L}}$.

Solution:

In the circuit shown in the figure when The switch S_{1} is closed and the other two switches are kept open, the circuit reduces to an $R C$. Therefore, its time constant $\tau_{C}=R C$.

When the switch S_{2} is closed and the other two switches are kept open, the circuit reduces to a $L R$ with time constant
$\tau_{L}=\frac{L}{R}$.
When the switch S_{3} is closed and the other two switches are kept open, the circuit reduces to a $L C$. It is an oscillatory circuit with period
$T=2 \pi \sqrt{L C}$.
As
$\tau_{C} \tau_{L}=L C$,
$T=2 \pi \sqrt{\tau_{C} \tau_{L}}$.

