Problem 38.49 (RHK)

Let us consider the circuit as shown in the figure. With switch S_1 closed and the other two switches open, the circuit has a time constant τ_c . With switch S_2 closed and the other two switches open, the circuit has time constant τ_L . With switch S_3 closed and the other two switches open, the circuit oscillates with a period T. We

Solution:

In the circuit shown in the figure when The switch S_1 is closed and the other two switches are kept open, the circuit reduces to an *RC*. Therefore, its time constant $\tau_C = RC$. When the switch S_2 is closed and the other two switches are kept open, the circuit reduces to a *LR* with time constant

$$\tau_L = \frac{L}{R}.$$

When the switch S_3 is closed and the other two switches are kept open, the circuit reduces to a *LC*. It is an oscillatory circuit with period

 $T = 2\pi\sqrt{LC}.$

As

 $\begin{aligned} \tau_{C} \tau_{L} &= LC, \\ T &= 2\pi \sqrt{\tau_{C} \tau_{L}}. \end{aligned}$

