522.

Problem 38.25 (RHK)

In the circuit shown in the figure values of the circuit elements are $\mathrm{E}=100 \mathrm{~V}, R_{1}=10 \Omega, R_{2}=20 \Omega$, $R_{3}=30 \Omega$, and $L=2.0 \mathrm{H}$. We have to find the values of i_{1} and i_{2} (a) immediately after switch S is closed; (b) a long time later; (c) immediately after switch S is opened again; (d) a long time later

Solution:

(a)

Immediately after the switch S is closed, there will be no flow of current in the inductor. At that instant current will flow through resistances R_{1} and R_{2} and its magnitude will be
$i_{1}=i_{2}=\frac{100}{30} \mathrm{~A}=3.33 \mathrm{~A}$.
(b)

A long time after the switch S has been closed, the flow of current through the inductor L will stabilise and there will be no change in current flow. The values of currents i_{1} and i_{2} can be obtained by applying Kirchoff's laws to loops. We have two linear equations for determining i_{1} and i_{2}.
$R_{1} i_{1}+R_{2} i_{2}=\mathcal{E}$,
and
$\left(i_{1}-i_{2}\right) R_{3}=i_{2} R_{2}$.
Substituting the value

and E, and solving the linear equations, we find
$i_{1}=4.55 \mathrm{~A}$,
and
$i_{2}=2.73 \mathrm{~A}$.
(c)

Immediately after the switch S is opened, the current i_{1}
will be zero and the current i_{2} will be equal to the steady state current flowing through the inductor; and will be $i=(4.55-2.73) \mathrm{A}=1.82 \mathrm{~A}$.
(d)

A long time later both currents i_{1} and i_{2} will be zero.

