520.

Problem 38.13 (RHK)

Two long parallel wires, each of radius a, whose centres are a distance d apart carry equal currents in opposite directions. Show that, neglecting the flux within the wires themselves, the inductance of the length l of such a pair of wires is given by

Solution:

$$
L=\frac{\mu_{0} l_{0}}{\pi} \ln \left(\frac{d-a}{a}\right) .
$$

Twolons parallel wires, each

of radius a, whose centres are a distance d apart carry equal currents in opposite directions. Let us calculate the flux of the magnetic field through the rectangular area $A B C D$
$(A D=B C=l ; A B=D C=d)$.
We will find the magnetic field due to the two long current carrying wires. As the current
is flowing in opposite directions, the magnetic field inside the rectangle $A B C D$ will be perpendicular and into the plane of the figure (as shown in the figure).

The magnetic field at a distance r from a long wire carrying current i is circular and its magnitude is

$$
B=\frac{\mu_{0} i}{2 \pi r} .
$$

Therefore, the magnetic field due to both wires at a point a distance ξ from the left-end wire will be

$$
B(\xi)=\frac{\mu_{0} i}{2 \pi \xi}+\frac{\mu_{i}}{2 \pi(d}
$$

The flux through the rectath ular area $B C D$ will therefore be given

$$
\begin{aligned}
\Phi=\int_{a}^{d-a} l d \xi B(\xi) & =l \int_{a}^{d-a} d \xi\left(\frac{\mu_{0} i}{2 \pi}\right)\left(\frac{1}{\xi}+\frac{1}{d-\xi}\right) \\
& =\left(\frac{\mu_{0} i l}{2 \pi}\right) \times\left[\ln \left(\frac{d-a}{a}\right)+\ln \left(\frac{d-a}{a}\right)\right] \\
& =\frac{\mu_{0} i l}{\pi} \ln \left(\frac{d-a}{a}\right) .
\end{aligned}
$$

Inductance is defined as the flux per unit current.
Therefore, the inductance of the length 1 of the pairs of wires will be

$$
L=\frac{\mu_{0} l}{\pi} \ln \left(\frac{d-a}{a}\right) .
$$

