516.

Problem 37.24 (RHK)

Consider a solid containing N atoms per unit volume, each atom having a magnetic dipole moment $\dot{\mu}$. Suppose the direction of $\hat{\mu}$ can be only parallel or antiparallel to an externally applied magnetic field $\stackrel{\stackrel{1}{B}}{B}$ (this will be the case if $\dot{\mu}$ is due to the spin of a single electron). According to statistical mechanics, it can be shown that the probability of an dom being in a state with energy U is proportionat to $e^{-U / k T}$ where T is the temperature and k is the Dolif mann's constant. Thus since $U=-\stackrel{\mathrm{r}}{\mu} \cdot \mathrm{B} \cdot \mathrm{B}$, the fraction of atom whose dipole moment is parallel to $\stackrel{1}{B}$ is proportional to $e^{\mu B / k T}$ and the fraction of atoms whose dipole moment is antiparallel to ${ }^{1}$ is proportional to $e^{-\mu \beta / k T}$. (a) We have to show that the magnetization of this solid is $M=N \mu \tanh (\mu B / k T)$. (b) We have to show that (a) reduces to $M=N \mu^{2} B / k T$ for $\mu B=k T$. (c) We have to show that (a) reduces to $M=N \mu$ for μB ? $k T$.

Solution:

Consider a solid containing N atoms per unit volume, each atom having a magnetic dipole moment $\dot{\mu}$. We suppose the direction of $\dot{\mu}$ can be only parallel or antiparallel to an externally applied magnetic field $\stackrel{\text { B }}{B}$ (this will be the case if $\hat{\mu}$ is due to the spin of a single electron). According to statistical mechanics, it can be shown that the probability of an atom being in a state with energy U is proportional to $e^{-U / k T}$ where T is the temperature and k is the Boltzmann's constant.

As

$$
U=-\stackrel{\mathrm{r}}{\mu} \cdot \stackrel{.}{B},
$$

the fraction of the atoms wriose dipole moment is parallel
to $\stackrel{1}{B}, \frac{N_{\uparrow}}{N}$,
$\frac{N_{\downarrow}}{N}=\alpha e^{\mu B / k T}$
where α is a constant, and N is the total number of atoms per unit volume. The fraction of the atoms whose dipole moment $\hat{\mu}$ is antiparallel to $\hat{B}, \frac{N_{\downarrow}}{N}$, will be
$\frac{N_{\uparrow}}{N}=\alpha e^{-\mu B / k T},$.

As

$$
\frac{N_{\uparrow}}{N}+\frac{N_{\downarrow}}{N}=1,
$$

we note that
$\alpha=\frac{1}{\left(e^{\mu B / k T}+e^{-\mu B / k T}\right)}$.
The magnetization of the material, which is defined as the magnetic moment per unit volume, will therefore be given by the expression

$$
\begin{aligned}
M & =\mu N_{\uparrow}-\mu N_{\downarrow} \\
& \left.=\mu N \frac{\left(e^{\mu B / k T}-e^{-\mu B}\right)}{\left(e^{\mu B / k T}+e^{-\mu B}\right)}\right)
\end{aligned}
$$

Let us call
$\frac{\mu B}{k T}=x$,
we thus find that
$M=\mu N \tanh x$.
(b)

We will consider two limiting cases, one when
$x=1$. In this limit as
The expression for magnetization simplifies to

$$
M=\mu N x=\frac{\mu^{2} B N}{k T}
$$

(c)

When x ? 1,
$\tanh x ; 1$,
and
$M ; N \mu$.

