## 514.

## Problem 37.29 (RHK)

The magnetic field of the Earth can be approximated as a dipole magnetic field, with horizontal and vertical components, at a point a distance r from the Earth's centre, given by

$$
B_{h}=\frac{\mu_{0} \mu}{4 \pi r^{3}} \cos L_{m}, \quad B_{v}=\frac{\mu_{0} \mu}{2 \pi r^{3}} \sin L_{m},
$$

where $L_{m}$ is the magnetic latitude (latitude measured from the magnetic equator toward the north or south magnetic pole). The magnetic dipole moment is $8.0 \times 10^{22} \mathrm{~A} \mathrm{~m}^{2}$. (a) We have to show that the strength at latitude $L_{m}$ is given by

$$
B=\frac{\mu_{0} \mu}{4 \pi r^{3}} \sqrt{1+3 \sin ^{2} L_{m}} .
$$

(b) We have to show that the inclination $\phi_{i}$ of the magnetic field is related to the magnetic latitude $L_{m}$ by $\tan \phi_{i}=2 \tan L_{m}$.

## Solution:

The magnetic field of the Earth can be approximated as a dipole magnetic field, with horizontal and vertical components, at a point a distance $r$ from the Earth's centre, given by

$$
B_{h}=\frac{\mu_{0} \mu}{4 \pi r^{3}} \cos L_{m}, \quad B_{v}=\frac{\mu_{0} \mu}{2 \pi r^{3}} \sin L_{m},
$$

where $L_{m}$ is the magnetic latitude (latitude measured from the magnetic equator toward the north or south magnetic pole).

The strength of the magnetic field at the latitude $L_{m}$ will be given by

$$
\begin{aligned}
B=\left(B_{h}{ }^{2}+B_{v}{ }^{2}\right)^{1 / 2} & =\frac{\mu_{0} \mu}{4 \pi r^{3}}\left(\cos ^{2} L_{m}+4 \sin ^{2} L_{m}\right)^{1 / 2} \\
& =\frac{\mu_{0} \mu}{4 \pi r^{3}}\left(1+3 \sin ^{2} L_{m}\right)^{1 / 2} .
\end{aligned}
$$

The inclination $\phi_{i}$ of the magnetic field is defined as
$\tan \phi_{i}=\frac{B_{v}}{B_{h}}$.
We note that

$$
\tan \phi_{i}=2 \tan L_{m} .
$$



