505.

Problem 37.5 (RHK)

Two wires, parallel to the z axis and a distance $4 r$ apart, carry equal currents i in opposite directions, as shown in the figure. A circular cylinder of radius r and length L has its axis on the z axis midway between the wires. Using Gauss' law for magnetism we have to calculate the net out ward magnetic flux through the half of the cylindrical surface above the x axis.

Solution:

Two wires, parallel to the z axis and a distance 4 r apart, carry equal currents i in opposite directions, as shown in the figure. A circular cylinder of radius r and length L has its axis on the z axis midway between the wires.

The Gauss' law for the magnetic field states that the net outward flux of magnetic field for any closed Gaussian surface S is zero. That is

$$
\iint_{S}{ }_{B}^{1} \cdot d{ }^{\mathrm{r}}=0 .
$$

For calculating the net outward magnetic flux through half of the cylindrical surface above the x-axis we consider a Gaussian surface S enclosed by the $x z$-plane within the cylinder dividing the cylinder vertically and the half of the cylindrical surface above the x-axis (A). As the magnetic field due to the current carrying wires which are parallel to the $z+$ aris s will be circular, the contribution to the flux fromithe top and bottom semicircular surfaces of S will be zero.

Therefore,

Or

$$
\iint_{\substack{\text { the cyilidical } \\ \text { above the axis }}} \stackrel{1}{B} \cdot d^{\mathrm{r}}=-\iint_{\mathrm{A}}^{1} \int^{1} \cdot d^{\mathrm{r}} .
$$

We will next calculate $\iint_{\mathrm{A}}^{1} B \cdot d s$.

The magnetic field due to the two long wires carrying
current i in opposite directions, as shown in the figure, at a
distance x from the z axis will be

$$
\begin{aligned}
\iint_{\mathrm{A}}^{\mathrm{r}} \mathrm{~B} \cdot d \mathrm{r} & =2 L \int_{0}^{r}(-)\left(\frac{\mu_{0} i}{2 \pi}\right)\left(\frac{1}{2 r-x}+\frac{1}{2 r+x}\right) d x \\
& =-\frac{\mu_{0} i L}{\pi}\left(\ln \left(\frac{2 r}{r}\right)+\ln \left(\frac{3 r}{2 r}\right)\right)=-\frac{\mu_{0} i L}{\pi} \ln 3 .
\end{aligned}
$$

We thus find that

$$
\iint_{\substack{\text { the cylidrical } \\ \text { above the xaxis }}} \stackrel{1}{B} \cdot d s=-\iint_{\mathrm{A}}^{\mathrm{r}} B \cdot d s
$$

$$
=\frac{\mu_{0} i L}{\pi} \ln 3
$$

