501.

Problem 36.41 (RHK)

In the figure two circular regions R_{1} and R_{2} have been shown. Their radii are $r_{1}=21.2 \mathrm{~cm}$ and $r_{2}=32.3 \mathrm{~cm}$, respectively. In R_{1} there is a uniform magnetic field $B_{1}=48.6 \mathrm{mT}$ into the page and in R_{2} there is a uniform magnetic field $B_{2}=77.2 \mathrm{mT}$ out of the page (ignoring any fringing of these fields). Both fields are decreasing at the rate $8.50 \mathrm{mT} \mathrm{s}^{-1}$. We have to calculate the integral $\mathbb{N}^{1} \cdot d^{\mathrm{r}}$ for each of the three indicated paths.

Solution:

According to Faraday's law of induction
$\mathbb{N}^{\mathrm{N}} \cdot \mathrm{I}^{\mathrm{r}}=-\frac{d \Phi}{d t}$,
where Φ is the flux enclosed by the closed curve.
(a)

We will calculate $\widetilde{\mathbb{N}}^{1} \cdot d^{\mathrm{r}}$ first for the path (a). It is given that the magnetic field is decreasing in both regions R_{1} and R_{2} at the uniform rate of $8.50 \mathrm{mT} \mathrm{s}^{-1}$. We note that the uniform magnetic field in the region R_{1} is into the plane of the figure. Therefore, induced current will flow in the clockwise direction to compensate for the decrease in flux in the region R_{1}. But the contour integral is being calculated in the counter-clockwise sense; therefore, its value will be negative. Therefore,

$$
\begin{aligned}
\mathbb{N}^{1} \mathbb{E} \cdot d_{s}^{\mathrm{r}}=-\pi r_{1}^{2} \times 8.50 \times 10^{-3} \mathrm{~V} & =-\pi(0.212)^{2} \times 8.50 \times 10^{-3} \mathrm{~V} \\
& =-1.20 \mathrm{mV}
\end{aligned}
$$

(b)

We will calculate $\mathbb{N}^{1} \cdot d^{\mathrm{r}}$ first for the path (b). It is given that the magnetic field is decreasing in both regions R_{1} and R_{2} at the uniform rate of $8.50 \mathrm{mT} \mathrm{s}^{-1}$. We note that the uniform magnetic field in the region R_{2} is coming out of the plane of the figure. Therefore, induced current will flow in the counter-clockwise direction to compensate for the decrease in flux in the region R_{2}. But the contour integral is being calculated in the clockwise sense; therefore, its value will be negative. Therefore, $\mathbb{N}^{1} E \cdot d^{\mathrm{r}}=-\pi r_{2}^{2} \times 8.50 \times 10^{-3} \cdot \mathrm{~V}=-\pi(0.323)^{2} \times 8.50 \times 10^{-3} \mathrm{~V}$ $=-2.79 \mathrm{mV}$.
(c)

We will calculate $\mathbb{N}^{1} \mathbb{E}^{1} \cdot{ }^{\mathrm{r}}$ first for the path (c). It is given that the magnetic field is decreasing in both regions R_{1} and R_{2} at the uniform rate of $8.50 \mathrm{mT} \mathrm{s}^{-1}$. As r_{2} is greater than r_{1} the net decrease of flux in the region enclosed by the contour (c) will be $\pi\left(r_{2}^{2}-r_{1}^{2}\right) \frac{d B}{d t}=(2.79-1.20) \mathrm{mV}$.

Therefore, induced current will flow in the counterclockwise direction to compensate for the decrease in flux enclosed. The sense of the contour integral is that of the flow of the induced current; therefore, its value will be negative. Therefore,
$\mathbb{N}^{1} \cdot d^{\mathrm{r}}=1.59 \mathrm{mV}$.

