Problem 36.38 (RHK)

A wire whose cross-sectional area is $1.2 \mathrm{~mm}^{2}$ and whose resistivity is $1.7 \times 10^{-8} \Omega \mathrm{~m}$ is bent into a circular arc of radius $r=24 \mathrm{cmas}$ shown in the figure. An additional straight length of this wire, $O P$, is free to pivot about O and makes sliding contact with the arc at P. Finally, another straight length of this wire, $O Q$, completes the circuit. The entire arrangement is located in a magnetic field $B=15$ Tdirected out of the plane of the figure. The straightre OH starts from rest with $\theta=0$ and has a constant angular acceleration of $12 \mathrm{rad} \mathrm{s}^{-2}$. (a) We have to find the resistance of the loop OPQO as a function of θ. (b) We have to find the magnetic flux through the loop as a function of θ. (c) We have to find the value of the angle θ for which induced current in the loop is a maximum. (d) We have to find the maximum value of the induced current in the loop.

Solution:

(a) and (b)

As the wire $O P$ is moving with constant acceleration,
$\alpha=12 \mathrm{rad} \mathrm{s}^{-2}$,
and OP starts from restwith $\theta=0$, the change with time of angle θ will be given by the function
$\theta(t)=\frac{1}{2} \alpha t^{2}$.
The flux enclosed by the loop $O Q P O$ will, therefore, be $\Phi(t)=\frac{1}{2} r^{2} \theta(t) B=\frac{1}{4} \alpha r^{2} B t^{2}$.

By the Faraday's law of induction with the change in flux in the loop emf will get developed, which is given by

$$
|\mathrm{E}(t)|=\frac{d \Phi(t)}{d t}=\frac{1}{2} \alpha r^{2} B t=\frac{1}{2} \alpha r^{2}\left(\frac{2 \theta}{\alpha}\right)^{1 / 2} B .
$$

The resistance of the loop will change with time. The length of the arc PQ is changing because P is sliding along the circumference of the semicircle. The resistance of the arc will be given by the function

$$
R(\theta)=(2 r+r \theta) \frac{\rho}{a},
$$

where ρ is the resistivity and a is the cross-sectional area of the wire.
(c) and (d)

Induced current in the loopas affinction of θ will be given by the expression

$$
i(\theta)=\frac{\mathrm{E}(\theta)}{R(\theta)}=\frac{\frac{1}{2} r^{2} \alpha^{\frac{1}{2}} 2^{\frac{1}{2}} \theta^{\frac{1}{2}} B}{r(2+\theta) \rho / a}=\frac{1}{\sqrt{2}} \frac{r \alpha^{\frac{1}{2}} \theta^{\frac{1}{2}} B}{(2+\theta) \rho / a} .
$$

For finding the maximum value of $i(\theta)$ we will calculate the extremum of the function $i(\theta)$.
$\frac{d i(\theta)}{d \theta}=0$,
or
$\frac{1}{2} \frac{\theta^{-\frac{1}{2}}}{(2+\theta)}+\frac{\theta^{\frac{1}{2}}(-1)}{(2+\theta)^{2}}=0$,
or
$\frac{1}{2}(2+\theta)-\theta=0$,
or
i will be maximum for $\theta=2$ rad.
The maximum value of the induced current will therefore be

$$
\begin{aligned}
i(\theta=2 \mathrm{rad}) & =\frac{1}{\sqrt{2}} \frac{r \theta^{\frac{2}{2}} \theta^{\frac{1}{2}}(B)}{(2+\theta) \hat{\theta}(\alpha)} \\
& =\frac{1}{\sqrt{2}} \frac{0.24 \times(12)^{\frac{1}{2}} \times \sqrt{2} \times 0.15 \times 1.2 \times 10^{-6}}{(2+2) \times 1.7 \times 10^{-8}} \mathrm{~A} \\
& =2.2 \mathrm{~A} .
\end{aligned}
$$

