Problem 36.17 (RHK)

A square circuit of side lengths 2.0 cm has been shown in the figure. A magnetic field points out of the page; its magnitude is given by $B=4 t^{2} y$, where B is in tesla, t is in seconds, and y is in meters. We have to determine the emf around the square at $t=2.5 \mathrm{~s}$ and give its direction.

Solution:

A square loop has sides of length 2.0 cm . A magnetic field points out of the page. Its magnitude is being given by $B=4 t^{2} y$, where B is in tesla and t is in seconds, and y is in meters. We have to determine the emf around the square at $t=2.5 \mathrm{~s}$ and also have to find its direction.

The flux due to the magnetic filed $B=4 t^{2} y$ can be calculated by integration. We have
$\Phi=\int_{0}^{2.0 \times 10^{-2}} 4 t^{2} y \times 2.0 \times 10^{-2} d y \mathrm{~T} \mathrm{~m}^{2}=8 \times 10^{-2} t^{2}\left[\frac{y^{2}}{2}\right]_{0}^{2.0 \times 10^{-2}} \mathrm{~T} \mathrm{~m}^{2}$.
Or
$\Phi=16 \times 10^{-6} t^{2} \mathrm{~T} \mathrm{~m}^{2}$.
And
$\frac{d \Phi}{d t}=32 \times 10^{-6} t \mathrm{~T} \mathrm{~m}^{2} \mathrm{~s}^{-1}$.
By the Faraday's law, the emf in the circuit at $t=2.5 \mathrm{~s}$ will be given by

$\mathcal{E}=\frac{d \Phi(t=2.5 \mathrm{~s})}{d t}=32 \times 10^{-6} \times 2.5 \mathrm{~V}=80 \mu \mathrm{~V}$.
By the Lenz' law we note that the direction of induced current will be clockwise.

