482.

Problem 35.33 (RHK)

Consider the rectangular loop carrying current i as shown in the figure. Point P is located a distance x from the centre of the loop. We have to find an expression for the magnetic field at P due to the current loop, assuming that P is very far away.

Solution:

We will calculate the magnetic field at P due to opposite sides of the rectangular taken in pairs. We first consider the sides 1 and 3. In the coordinate system fixed as shown, let the coordinates of the point P be $(b / 2, a / 2, x)$.

We assume that $x ? a, b$, and the distance to point P from the sides of the loop can be approximated as nearly equal to x.

From the Ampere's law we note that the magnetic field at P due to line element $i d \xi(-\hat{j})$ at $(0, \xi, 0)$ will be

$$
\begin{aligned}
d \stackrel{\mathrm{r}}{B} & ; \frac{\mu_{0}}{4 \pi} \frac{i(-\hat{j} d \xi) \times(b \hat{i} / 2+(a / 2-\xi) \hat{j}+x \hat{k})}{x^{3}} \\
& =-\frac{\mu_{0} i(-b \hat{k} / 2+x \hat{i})}{4 \pi x^{3}}
\end{aligned}
$$

We note that the \hat{i} components of $d \dot{B}$ due to current elements in sides 1 and 3 will cancel each other in pairs. Therefore, the component of $d \vec{B}$ in the \hat{k} direction at P due to current i in the sides 1 and 3 of the loop will be

$$
d \stackrel{\mathrm{r}}{B}=\frac{\mu_{0} i b d \xi \hat{k}}{4 \pi x^{3}}
$$

and the combined field at P due to current flows in sides 1 and 3 of the loop will be

$$
{\stackrel{\mathrm{r}}{B_{(1,3)}}}=\frac{\mu_{0} i b a \hat{k}}{4 \pi x^{3}}
$$

We can calculate the magnetic field at P due to the current flow in the sides 2 and 4 of the loop and we will find that
${\stackrel{\mathrm{r}}{B_{(2,4)}}}=\frac{\mu_{0} i b a \hat{k}}{4 \pi x^{3}}$.
Therefore, the magnetic field at P due to current flow in the loop will be
$\stackrel{\mathrm{r}}{B}=\frac{\mu_{0} i b a \hat{k}}{2 \pi x^{3}}$.
The magnetic dipole moment of the planar loop of area $a b$ with current i is
$\mu=a b i$.
Therefore,
$\stackrel{\mathrm{r}}{B}=\frac{\mu_{0} \mu \hat{k}}{2 \pi x^{3}}$.
This is the expression of field due to a magnetic dipole at a distance x on its axis far away from the dipole.

