## Problem 35.56 (RHK)

We have to derive the solenoid equation starting from the expression for the field on the axis of a circular loop.

## Solution:

Let the number of turns per unit length of the solenoid be $n$. We will calculate the magnetic field at the axis of an ideal solenoid. That is we assume that the solenoid is of infinite length. Let the radius of the solenoid be $r$.


We recall that the magnetic field at the axis of a circular current carrying loop at a distance x from its centre is given by

$$
B(x)=\frac{\mu_{0} i r^{2}}{2\left(r^{2}+x^{2}\right)^{3 / 2}} .
$$

Its direction is along the axis perpendicular to the plane of the circular loop.

We will calculate the magnetic field at P , which we take to be the origin of the $x$-axis. Let us consider a section of the solenoid of thickness $d x$ at a distance $x$ from the point $P$. Let the current flowing in the circular loops of the solenoid be

$$
d B(P)=\frac{\mu_{0} n d x i r^{2}}{2\left(r^{2}+x^{2}\right)^{3 / 2}} .
$$

Therefore, the magnetic field at P at the axis of the solenoid will be given by integrating $d B(P)$ with respect to $x$ from $-\infty$ to $+\infty$. We have

$$
B(P)=\int_{-\infty}^{+\infty} \frac{\mu_{0} n d x i i^{2}}{2\left(r^{2}+x^{2}\right)^{3 / 2}} .
$$

This integral is readily evaluated by making the substitution
$x=r \tan \theta$,
$d x=r \sec ^{2} \theta d \theta$.
We find

$$
B(P)=\frac{\mu_{0} n i}{2} \int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta=\frac{\mu_{0} n i}{2} \times 2=\mu_{0} n i .
$$

The magnetic field at the axis of the solenoid is, therefore,

$$
B=\mu_{0} n i .
$$



