473.

Problem 35.41 (RHK)

In a certain region there is a uniform current density of $15 \mathrm{~A} \mathrm{~m}^{-2}$ in the positive z direction. We have to find the value of $\tilde{\mathbb{N}}^{1} \cdot d^{\mathrm{r}}$ when the line integral is taken along three straight-line segments from $(4 d, 0,0)$ to $(4 d, 3 d, 0)$ to $(0,0,0)$ to $(4 d, 0,0)$, where $d=23 \mathrm{~cm}$.

Solution:

As the line integral is traversed in the counter-clockwise direction, and as the currents enclosed are in the z direction, they will contribute with positive sign in the Ampere's law. It is given that the current density is
uniform and is $15 \mathrm{~A} \mathrm{~m}^{-2}$. From the diagram, we note that as the area enclosed by the Amperian path is that of a triangle with base $3 d$ and height $4 d$, it is
$A=\frac{1}{2} \times 4 d \times 3 d=6 d^{2}$.
$\therefore \mathbb{N}^{1} \cdot{ }^{\mathrm{r}}{ }^{\mathrm{r}}=\mu_{0} \times 6 d^{2} \times j$,
where the current density

$$
j=15 \mathrm{~A} \mathrm{~m}^{-2} .
$$

$$
\therefore \mathfrak{N}^{1} B \cdot d s=\mu_{0} \times 6 \times(0.23)^{2} \times 15 \mathrm{~T} \mathrm{~m}
$$

$$
=4 \pi \times 10^{-7} \times 6 \times(0.23)^{2} \times 15 \mathrm{~T} \mathrm{~m}
$$

$$
=5.98 \mu \mathrm{~T} \mathrm{~m} .
$$

