468.

Problem 35.29 (RHK)

(a) A wire in the form of a regular polygon of n sides is just enclosed by a circle of radius a. If the current in the wire is i, we have to show that the magnetic field $\stackrel{\perp}{B}$ at the centre of the circle is given in magnitude by

$$
B=\frac{\mu_{0} n i}{2 \pi a} \tan (\pi / n)
$$

(b) We have to show that as $n \rightarrow \infty$ this result approaches that of a circular loop. (c) We have to find the dipole moment of the polygon.

Solution:

(a)

A wire in the form of a regular polygon of n sides is just enclosed by a circle of radius a. The angle subtended by each side of the polygon with the centre of the circle of radius a will be $2 \pi / n$. Length of each side of the polygon will be

$$
L=2 a \sin \left(\frac{\pi}{n}\right)
$$

We have already shown that the magnetic field B associated with a current carrying straight line segment of length L at a distance R from the segment along a perpendicular bisector is

$$
B=\frac{\mu_{0} i}{2 \pi R} \frac{L}{\left(L^{2}+4 R^{2}\right)^{1 / 2}} .
$$

For our problem we use that contribution to the magnetic field at the point P by each side of the polygon will be the same and can be obtained from the above result for the values
$L=2 a \sin \left(\frac{\pi}{n}\right)$,
$R=a \cos \left(\frac{\pi}{n}\right)$.
Therefore, the magnitude of the magnetic field at P by each side of the polygon will be
$\frac{\mu_{0} i}{2 \pi a \cos \left(\frac{\pi}{n}\right)} \times \frac{2 a \sin \left(\frac{\pi}{n}\right)}{\left(4 a^{2} \sin ^{2}\left(\frac{\pi}{n}\right)+4 a^{2} \cos ^{2}\left(\frac{\pi}{n}\right)\right)^{1 / 2}}$
$=\frac{\mu_{0} i}{\pi} \frac{\tan \left(\frac{\pi}{n}\right)}{2 a}$.
As the magnetic field at the centre of the polygon sue to each side will be perpendicular to the plane of the polygon, the total magnetic field will be n times the field due to one side. Therefore, $B=\frac{\mu_{0} n i}{2 \pi a} \tan (\pi / n)$.
(b)

As
$n \rightarrow \infty, n \tan \left(\frac{\pi}{n}\right)=\lim _{n \rightarrow \infty} \frac{n \sin \left(\frac{\pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}=\pi$.
$\therefore \lim _{n \rightarrow \infty} B(n)=\frac{\mu_{0} i}{2 a}$.
It is same as the magnetic field at the centre of a circular loop of radius a carrying current i.

(c)

We calculate next the dipole moment of the polygon. The magnetic dipole moment of a planar closed loop in current times the area enclosed. The area of each triangle formed by joining the side of a polygon with the centre will be
$\frac{A}{n}=\left(a \sin \left(\frac{\pi}{n}\right)\right)\left(a \cos \left(\frac{\pi}{n}\right)\right)=\frac{a^{2} \sin \left(\frac{2 \pi}{n}\right)}{2}$,
$\therefore A=\frac{n a^{2} \sin \left(\frac{2 \pi}{n}\right)}{2}$,
And, the magnetic dipole moment of the polygon will be
$\mu=i A=\frac{i a^{2} n}{2} \sin \left(\frac{2 \pi}{n}\right)$.

