Problem 35.21 (RHK)

In the figure cross-section has been shown of a long thin ribbon of width w that is carrying a uniformly distributed total current i into the page. We have to calculate the magnitude and the direction of the magnetic field $\stackrel{1}{B}$ at a point P in the plane of the ribbon at a distance d from its edge.

Solution:

We imagine the ribbon to be comprising of many, long, thin, parallel wires each of thickness $d x$. The current in each such wire will be $i d x / w$. As the current is entering into the plane of page, using the right-hand rule, we note that the direction of the magnetic field at P will be in the direction of the unit vector \hat{n}, and the magnetic field will be uniform circles around each thin wire.

The magnetic field at P due to a wire element $d x$ at distance x from the right-hand edge will be
$\Delta \stackrel{\mathrm{r}}{B}(P)=\frac{\mu_{0} i d x}{w(2 \pi(d+w-x))} \hat{n}$.
Therefore, the magnetic field at P due to the ribbon with current i will be given by the integral
$\int_{0}^{w} \frac{\mu_{0} i d x}{w(2 \pi(d+w-x))} \hat{n}=\frac{\mu_{0} i}{2 \pi w} \hat{n} \int_{0}^{w} \frac{d x}{(d+w-x)}$.
For calculating the above integral, we make the substitution
$d+w-x=\xi$,
$-d x=d \xi$.
We get
$\stackrel{\mathrm{r}}{B}(P)=\frac{\mu_{0} i}{2 \pi w} \hat{n} \int_{d}^{d+w} \frac{d \xi}{\xi}=\frac{\mu_{0} i}{2 \pi w} \hat{n} \ln \left(\frac{d+w}{d}\right)$.

