463.

Problem 35.18 (RHK)

A square loop of wire of edge a carries a current i.
(a) We have to show that B for a point on the axis of the loop and a distance z from its centre is given by

$$
B(z)=\frac{4 \mu_{0} i a^{2}}{\pi\left(4 z^{2}+a^{2}\right)\left(4 z^{2}+2 a^{2}\right)^{1 / 2}} .
$$

(b) From this result we have to answer, what does this field reduce to at the centre of the square?

Solution:

the centre of the square. We number the four segments of the loop as shown in the figure.

We will first calculate the contribution to the magnetic field $\stackrel{1}{B}$ at point $\mathrm{P}(0,0, z)$ on the axis of the loop due to the segment (1).

Let us consider an infinitesimal current element $i d x$
along the direction of the current at point $\left(x,-\frac{a}{2}, 0\right)$. Let the line vector joining P with $d x$ be $\stackrel{1}{r}$. Length of $\stackrel{1}{r}$ will be
$r=\left(x^{2}+\frac{a^{2}}{4}+z^{2}\right)^{1 / 2}$
and the unit vector in the direction of ${ }^{1}$ is

$$
\hat{r}=-\frac{x}{r} \hat{i}+\frac{a}{2 r} \hat{j}+\frac{z}{r} \hat{k} .
$$

The magnetic field at P due to $i d \dot{x}$ will be

$$
\begin{aligned}
{\stackrel{\mathrm{r}}{B_{(1)}}} & =\frac{\mu_{0}}{4 \pi} \frac{i d \stackrel{\mathrm{r}}{x} \times \hat{r}}{r^{2}}=\frac{\mu_{0} i d x}{4 \pi r^{2}}\left(\hat{i} \times\left(-\frac{x}{r} \hat{i}+\frac{a}{2 r} \hat{j}+\frac{z}{r} \hat{k}\right)\right) \\
& =\frac{\mu_{0} i d x}{4 \pi r^{2}}\left(\frac{a}{2 r} \hat{k}-\frac{z}{r} \hat{j}\right) .
\end{aligned}
$$

The component of $d \hat{B}_{(1)}$ in direction of \hat{k} is

$$
d B_{(1)}=\frac{\mu_{0}}{4 \pi} \frac{i a d x}{2 r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{i a d x}{2\left(x^{2}+\frac{a^{2}}{4}+z^{2}\right)^{3 / 2}} .
$$

We may note that by symmetry the net contribution in the \hat{j} direction will be zero. Therefore,

$$
B_{(1)}=2 \int_{0}^{a / 2} \frac{\mu_{0} a i}{8 \pi} \frac{d x}{\left(x^{2}+\frac{a^{2}}{4}+z^{2}\right)^{3 / 2}}=\frac{\mu_{0} i a^{2}}{\pi\left(a^{2}+4 z^{2}\right)\left(2 a^{2}+4 z^{2}\right)^{1 / 2}} .
$$

Contributions to the magnetic field at P due to the other three segments will be equal to the one calculated for the segment (1) and will also be in the \hat{k} direction.

Therefore, the magnetic field at P due to the square loop will be

$$
B(z)=\frac{4 \mu_{0} i a^{2}}{\pi\left(4 z^{2}+a^{2}\right)\left(4 z^{2}+2 a^{2}\right)^{1 / 2}} .
$$

(b)

Therefore, the field at the centre of the square will be

$$
B(0,0,0)=\frac{2 \sqrt{2} \mu_{0} i}{\pi a} .
$$

