462.

Problem 35.17 (RHK)

We have to show that B at the centre of a rectangular loop of wire of length L and width W, carrying a current i, is given by

$$
B=\frac{2 \mu_{0} i}{\pi} \frac{\left(L^{2}+W^{2}\right)^{1 / 2}}{L W} .
$$

Solution:

We first calculate the magnetic field due to a straight wire segment of length l, carrying current i, at a distance r from its mid-point.

Using Biot-Savart law we write the expression for the magnetic field at P due to an infinitesimal current element $i d{ }^{2} \dot{x}$.
$d \stackrel{\mathrm{r}}{B}=\frac{\mu_{0}}{4 \pi} \frac{i d x \xi}{\xi^{3}} \frac{r}{\xi} \hat{k}$,
$\xi=\left(r^{2}+(l / 2-x)^{2}\right)^{1 / 2}$.
$\therefore \stackrel{\mathrm{r}}{B}=\frac{\mu_{0} i r}{4 \pi} \hat{k} \int_{0}^{l} \frac{d x}{\left(r^{2}+(l / 2-x)^{2}\right)^{3 / 2}}$.
In the integral, we make the substitution
$\frac{l}{2}-x=r \tan \theta$,
$-d x=r \sec ^{2} \theta d \theta$.
We get

$$
\stackrel{\mathrm{r}}{B}=\frac{\mu_{0}}{4 \pi} i r \hat{k} \int_{-\tan ^{-1}(l / 2 r)}^{\tan ^{-1}(l / 2 r)} \frac{\cos \theta d \theta}{r^{2}}=\frac{\mu_{0}}{2 \pi} \frac{i}{r} \hat{k} \frac{l}{\left(l^{2}+4 r^{2}\right)}
$$

We will use this result and write contributions to $\stackrel{1}{B}$ at P due to the current carrying line segments $(1),(2),(3)$ and (4).
$\stackrel{\mathrm{r}}{B}_{(1)}=\stackrel{\mathrm{r}}{B}_{(3)}=\frac{\mu_{0}}{2 \pi} \frac{i \hat{k}}{W / 2} \frac{L}{\left(L^{2}+W^{2}\right)^{1 / 2}}$,
$\stackrel{\mathrm{r}}{B}_{(2)}={\stackrel{\mathrm{r}}{B_{(4)}}}_{(2 \pi}^{2 \pi} \frac{\mu_{0}}{L / 2} \frac{L}{\left(L^{2}+W^{2}\right)^{1 / 2}}$.

$$
\therefore \stackrel{\mathrm{r}}{B}=\frac{2 \mu_{0} i}{\pi} \frac{\hat{k}}{\left(L^{2}+W^{2}\right)^{1 / 2}}\left(\frac{L}{W}+\frac{W}{L}\right)=\frac{2 \mu_{0} i}{\pi} \frac{\left(L^{2}+W^{2}\right)^{1 / 2}}{L W} \hat{k} .
$$

