Problem 35.15 (RHK)

Consider the circuit shown in the figure. The curved segments are arcs of circles of radii a and b. We have to find the magnetic field $\stackrel{\perp}{B}$ at P , assuming a current i in the circuit.

Solution:

As the point P is on the extension of the straight-line segments of the circuit, the magnetic field at P due to these segments will be zero. The magnetic field at P due to the arc of circle of radius a will be in the direction of $-\hat{k}$, if the circuit is in the $\hat{i}-\hat{j}$ plane, and $\hat{i} \times \hat{j}=\hat{k}$. As the direction of the current flow in the arc of the circle of radius b is in the counter-clockwise direction, the magnetic field at P due to this segment of the circuit will be in the direction \hat{k}. We, therefore, find the magnetic field at P to be given by

$$
\stackrel{\mathrm{r}}{B}(P)=\frac{\mu_{0} i}{4 \pi}\left(\frac{a \theta}{a^{2}}(-\hat{k})+\frac{b \theta}{b^{2}} \hat{k}\right)=\frac{\mu_{0} i}{4 \pi} \theta \frac{(a-b)}{a b} \hat{k}
$$

The magnitude of the magnetic field at P will be

$$
B(P)=\frac{\mu_{0} i}{4 \pi} \theta \frac{(a-b)}{a b}
$$

