460.

Problem 35.14 (RHK)

A straight section of wire of length L carries a current i. (a) We have to show that the magnetic field associated with this segment at P , a perpendicular distance D from one end of the wire (see figure), is given by
(b) We have to show that Hice: masnetic field is zero at point Q, along the line

$$
\begin{aligned}
& B=\frac{\mu_{0} i}{4 \pi D} \frac{L}{\left(L^{2}+D^{2}\right)^{1 / 2}} . \\
& \text { show that } .
\end{aligned}
$$

Solution:

Using the Biot-Savart law we write the expression for the magnetic field at the point P due to an infinitesimal segment of wire of length $d^{\lambda} x$ carrying current i. We have
$d \stackrel{\mathrm{r}}{B}=\frac{\mu_{0}}{4 \pi} \frac{i d x \times \stackrel{1}{r}}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{i d x}{r^{2}} \frac{D}{r} \hat{k}$,
where \hat{k} is a unit vector perpendicular to the plane of the figure.

But
$r=\left((L-x)^{2}+D^{2}\right)^{1 / 2}$.
Therefore,

$$
\stackrel{\mathrm{r}}{B}(\mathrm{P})=\frac{\mu_{0} i D}{4 \pi} \hat{k} \int_{0}^{L} \frac{d x}{\left((L-x)^{2}+D^{2}\right)^{3 / 2}}
$$

We make the followin $\frac{\operatorname{sug}}{\mathrm{s} \text { gitution }}$ in the integral
$L-x=D \tan \theta$,
$-d x=D \sec ^{2} \theta$.
We get

$$
\begin{aligned}
\stackrel{\mathrm{r}}{B}(\mathrm{P}) & =\frac{\mu_{0} i D}{4 \pi} \hat{k} \int_{0}^{L} \frac{d x}{\left((L-x)^{2}+D^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} i D}{4 \pi} \hat{k} \int_{0}^{\tan ^{-1}\left(\frac{L}{D}\right)} \frac{D \sec ^{2} \theta d \theta}{D^{3} \sec ^{3} \theta}=\frac{\mu_{0} i D}{4 \pi} \hat{k} \int_{0}^{\tan ^{-1}\left(\frac{L}{D}\right)} \frac{\cos \theta d \theta}{D}
\end{aligned}
$$

$$
=\frac{\mu_{0} i}{4 \pi} \hat{k}[\sin \theta]_{0}^{\tan ^{-1}\left(\frac{L}{D}\right)}=\frac{\mu_{0} i}{4 \pi} \hat{k} \times \frac{L}{\left(L^{2}+D^{2}\right)^{1 / 2}},
$$

where we have used
$\sin \left(\tan ^{-1}\left(\frac{L}{D}\right)\right)=\frac{L}{\left(L^{2}+D^{2}\right)^{1 / 2}}$.
(b)

As the point Q is along the line segment carrying the current i, from the Biot-Savart law, we note that as the vectors \dot{i} and \dot{r} are parallet theiri cross product is zero. Hence the magnetic fibld die to the line segment will be zero at Q .

