459.

Problem 35.13 (RHK)

A wire carrying current i has the configuration as shown in the figure. Two semi-infinite straight sections, each tangent to the same circle, are connected by a circular arc, of angle θ, along the circumference of the circle, with all sections lying in the same plane. We have to find θ for B to be zero at the centre of the circle.

Solution:

Let the wire sections carrying current i be in the xy plane and the z -axis be \perp to the xy -plane with orientation $\hat{i} \times \hat{j}=\hat{k}$.

Using the Biot-Savart law we will calculate the magnetic field at the point P by the three sections of the current carrying wire.

We will first calculate the magnetic field at P due to the semi-infinite length section shown in the following figure.

Let us write the field due to the element as $d \dot{\xi}$ at a distance ξ from the open
$d \stackrel{\mathrm{r}}{B_{1}}=\frac{\mu_{0}}{4 \pi}(-i) \frac{d \stackrel{\stackrel{\rightharpoonup}{\xi}}{\xi} \times \stackrel{\mathrm{r}}{r}}{r^{3}}=\frac{\mu_{0} i}{4 \pi} \frac{d \xi}{r^{2}} \sin \alpha \hat{k}=\frac{\mu_{0} i}{4 \pi} \frac{R d \xi}{\left(R^{2}+\xi^{2}\right)^{3 / 2}} \hat{k}$.
And
$\stackrel{\mathrm{r}}{B_{1}}=\frac{\mu_{0} i R}{4 \pi} \hat{k} \int_{0}^{\infty} \frac{d \xi}{\left(R^{2}+\xi^{2}\right)^{3 / 2}}$.
We calculate next the integral
$\int_{0}^{\infty} \frac{d \xi}{\left(R^{2}+\xi^{2}\right)^{3 / 2}}$.
Making the substitution
$\xi=R \tan \theta$,
$d \xi=R \sec ^{2} \theta d \theta$,
we have

$$
\int_{0}^{\infty} \frac{d \xi}{\left(R^{2}+\xi^{2}\right)^{3 / 2}}=\int_{0}^{\pi / 2} \frac{R \sec ^{2} \theta d \theta}{R^{3} \sec ^{3} \theta}=\frac{1}{R^{2}} \int_{0}^{\pi / 2} \cos \theta d \theta=\frac{1}{R^{2}} .
$$

Therefore,
${ }_{B_{1}}^{\mathrm{r}}=\frac{\mu_{0} i}{4 \pi R} \hat{k}$.
Similarly, the magnetic field at P due to the other semiinfinite wire carrying current i as shown in the first figure will also be

$$
\stackrel{\mathrm{r}}{B_{2}}=\frac{\mu_{0} i}{4 \pi R} \hat{k} .
$$

We next calculate the magnetic field at P due to the circular arc subtending an angle θ with P .

As the radial direction is perpendicular to the tangent at the circumference,

$$
d_{s}^{\mathrm{r}} \times \stackrel{\mathrm{r}}{r}=r d s(-\hat{k}) .
$$

The magnetic field at P due to the arc of angle θ will be

$$
\stackrel{\mathrm{r}}{\text { arc }}=-\frac{\mu_{0} i}{4 \pi} \times \frac{R \theta}{R^{2}} \hat{k} .
$$

The magnetic field at P due all the three sections of the wire carrying current i will, therefore, be

$$
\stackrel{\mathrm{r}}{B}=\frac{2 \mu_{0} i}{4 \pi R} \hat{k}-\frac{\mu_{0} i \theta}{4 \pi R} \hat{k} .
$$

For $\stackrel{1}{B}$ to be zero
$\theta=2 \mathrm{rad}$.

