454.

Problem 34.60 (RHK)

A circular loop of wire having a radius of 8.0 cm carries a current of 0.20 A . A unit vector parallel to the dipole moment $\hat{\mu}$ of the loop is given by $\hat{n}=0.60 \hat{i}-0.80 \hat{j}$. If the loop is located in a magnetic field given in T by $\stackrel{1}{B}=0.25 \hat{i}+0.30 \hat{k}$, we have to find (a) torque on the loop and (b) the magnetic potential energy of the loop.

Solution:

(a)

The unit vector parallel to the dipole moment $\hat{\mu}$ of the loop is
$\hat{n}=0.60 \hat{i}-0.80 \hat{j}$.
Loop is a circular wire of radius 8.0 cm . The area of the loop is

$$
A=\pi\left(8.0 \times 10^{-2}\right) \mathrm{m}^{2} .
$$

Current flowing in the loop
$i=0.20 \mathrm{~A}$.

Therefore, the magnitude of the magnetic dipole moment of the current carrying loop is

$$
\begin{aligned}
\mu=i A & =0.2 \times \pi\left(8.0 \times 10^{-2}\right) \mathrm{A} \mathrm{~m}^{2} \\
& =4.02 \times 10^{-3} \mathrm{Am}^{2} .
\end{aligned}
$$

The magnetic dipole moment is
$\stackrel{\mathrm{r}}{\mu}=4.02 \times 10^{3}(0.60 \hat{i}-0.80 \hat{j}) \mathrm{A} \mathrm{m}^{2}$.
The current carrying loop is placed in a magnetic field $\stackrel{\mathrm{I}}{B}=(0.25 \hat{i}+0.30 \hat{k}) \mathrm{T}$.

Therefore, the torque on the loop will be
$\stackrel{\mathrm{r}}{\tau}=\stackrel{\mathrm{r}}{\mu} \times \stackrel{\mathrm{r}}{B}=4.02 \times 10^{-3}(0.60 \hat{i} \ldots .0 .80 \hat{j}) \times(0.25 \hat{i}+0.30 \hat{k}) \mathrm{N} \mathrm{m}$ $=4.02 \times 10^{-3}\left(\frac{0.18,+0.20 \hat{k}-0.24 \hat{i}) \mathrm{N} \mathrm{m} .}{2}\right.$
(b)

The magnetic potential energy of the loop

$$
\begin{aligned}
U=-\frac{\mathrm{r}}{\mu} \cdot \mathrm{~B} & =-4.02 \times 10^{-3}(0.60 \hat{i}-0.80 \hat{j}) \cdot(0.25 \hat{i}+0.30 \hat{k}) \mathrm{J} \\
& =-4.02 \times 10^{-3}(0.15) \mathrm{J}=-0.60 \mathrm{~mJ} .
\end{aligned}
$$

