449.

Problem 34.51 (RHK)

A length L of wire carries a current i. We have to show that if the wire is formed into a circular coil, the maximum torque in a given magnetic field is developed when the coil has one turn only and the maximum torque has the magnitude

Solution:

Let us assume that wire of length L is turned into a coil of radius r and n turns. We then have

$$
L=2 \pi r n,
$$

or

$$
r=\frac{L}{2 \pi n} .
$$

Total area of the n-turns of the coil will be

$$
A=n \pi r^{2}=\frac{n \pi L^{2}}{4 \pi^{2} n^{2}}=\frac{L^{2}}{4 \pi n} .
$$

It is maximum for $n=1$. A current carrying loop of area A and current i is effectively a magnetic dipole with dipole moment
$\hat{\mu}=i A \hat{n}$,
where \hat{n} is the unit vector \perp to the plane of the loop.
Therefore, the dipole moment of loop will be
$\stackrel{\mathrm{r}}{\mu}=\frac{i L^{2}}{4 \pi} \hat{n}$.
The torque on a magnetic dipole of moment $\hat{\mu}$ in magnetic field B is
$\stackrel{\mathrm{r}}{\tau}=\stackrel{\mathrm{r}}{\mu} \times \stackrel{\stackrel{1}{B}}{ }$.
The maximum value of torque is obtained when $\stackrel{\dot{\mu}}{ }$ and $\stackrel{1}{B}$
are \perp to each other. Its magnitude then is
$\tau_{\text {max }}=\mu B$.
For our problem
$|\stackrel{\mathrm{r}}{\mu}|=\frac{i L^{2}}{4 \pi}$.
$\therefore \tau_{\max }=\frac{i L^{2} B}{4 \pi}$.

