441.

Problem 34.37 (RHK)

We have to show that, in terms of the Hall electric field E and the current density j, the number of charge carriers per unit volume is given by

$$n = \frac{jB}{eE}.$$

Solution:

The Hall electric field \dot{E} arises so that the net Lorentz force on charge carriers inside a conductor is zero. Let \dot{v}_d be the drift velocity of charge carriers. The magnetic field \dot{B} is so arranged as to have $\overset{\Gamma}{v}_d \cdot \overset{L}{B} = 0.$

This condition implies that

$$e\left(\stackrel{\mathbf{r}}{v_d}\times\stackrel{\mathbf{i}}{B}+\stackrel{\mathbf{i}}{E}\right)=0.$$

From this equation, we note that

$$\begin{vmatrix} \mathbf{r} \\ \mathbf{v}_d \times \mathbf{B} \end{vmatrix} = \begin{vmatrix} -\mathbf{L} \\ -\mathbf{E} \end{vmatrix}.$$

As v_d and B are orthogonal, we have

$$v_d B = E.$$

The current density *j* in terms of volume density of charge carriers, *n*, drift speed, v_d , and charge, *e*, is

$$j = nv_d e,$$

 $\therefore v_d = \frac{j}{ne}.$

We thus have

$$\frac{E}{B} = \frac{j}{ne},$$

and

$$n = \frac{jB}{eE}.$$

