440. 

## Problem 34.35 (RHK)

Consider a particle of mass $m$ and charge $q$ moving in the xy-plane under the influence of a uniform magnetic field $\stackrel{\perp}{B}$ pointing in the $+z$ direction. We have to prove that the particle moves in a circular path by solving Newton's equations of motion analytically.

## Solution:

Force on a particle of harge $9 ;$ mass $m$, moving in
magnetic field $\stackrel{\perp}{B}$ is $\stackrel{\stackrel{\rightharpoonup}{F}}{F}=\stackrel{\mathrm{r}}{v} \times \stackrel{\stackrel{1}{B} .}{ }$.

Let the position vector of the particle be $r$.
We use the Newton's second law for writing the equation of motion. It is
$m \frac{d^{2} r(t)}{d t^{2}}=q \stackrel{\mathrm{r}}{v} \times \stackrel{\mathrm{r}}{B}$.
It is given that the magnetic field is in the $+z$ direction.
That is

$$
\stackrel{1}{B}=B \hat{k}
$$

As the particle is moving in the $x y$-plane,

$$
\stackrel{\mathrm{r}}{r}(t)=x(t) \hat{i}+y(t) \hat{j} .
$$

Substituting this in the equation of motion, we have

$$
\begin{aligned}
m\left(\frac{d^{2} x(t)}{d t^{2}} \hat{i}+\frac{d^{2} y(t)}{d t^{2}} \hat{j}\right) & =q\left(v_{x} \hat{i}+v_{y} \hat{j}\right) \times B \hat{k} \\
& =q\left(-v_{x} \hat{j}+v_{y} \hat{i}\right) B
\end{aligned}
$$

or
$m \frac{d^{2} x(t)}{d t^{2}}=q v_{y} B$,
and

$$
m \frac{d^{2} y(t)}{d t^{2}}=-q v_{x} B
$$

Combining above two
 get

$$
\frac{d}{d t}\left(v_{x}+i v_{y}\right)=-\frac{i q B}{m}\left(v_{x}+i v_{0}\right)
$$

Its solution is

$$
v_{x}+i v_{y}=v e^{-\frac{i q B}{m}(t+\alpha)}
$$

Without loss of generality, we select the solution of this equation as

$$
v_{y}=v \sin \left(\frac{q B}{m} t\right) .
$$

Therefore,
$v_{x}=-v \cos \left(\frac{q B}{m} t\right)$.
Note that
$v_{x}^{2}+v_{y}^{2}=v^{2}$.
That is the charged particle is moving with constant
speed and describes a circular motion. Let the radius of the circular orbit be $r$. Integrating $v_{x}$ and $v_{y}$ equations,
we can write
$x=-\frac{m v}{q B} \sin \left(\frac{q B}{m} t\right)$,

$y=-\frac{m v}{q B} \cos \left(\frac{q B}{m} t\right)$,
and
$r=\frac{m v}{q B}$.
By plotting $x(t)$ and $y(t)$, we note if $q$ is positive, the particle will move in the clockwise direction.

