437.

Problem 34.29 (RHK)

Ionisation measurements show that a particular nuclear particle carries a double charge $(=2 e)$ and is moving with a speed of 0.710 c. It follows a circular path of radius 4.72 m in a magnetic field of 1.33 T . We have to find the mass of the particle and identify it.

Solution:

For a relativistic charged particle, charge q, moving in a circular orbit, radius r, in magnetic field, B, its momentum, p, in terms of q, B, and r is
$p=q B r$.
In our problem
$q=2 e$,
$B=1.33 \mathrm{~T}$,
and
$r=4.72 \mathrm{~m}$.
Therefore,

$$
\begin{aligned}
p & =2 \times 1.6 \times 10^{-19} \times 1.33 \times 4.72 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\
& =2.0088 \times 10^{-18} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
$$

For a relativistic particle
$p=\frac{m v}{\sqrt{1-v^{2} / c^{2}}}$,
or
$m=\frac{p}{v} \sqrt{1-v^{2} / c^{2}}$.
Speed of the particle
$v=0.710 c=0.710 \times 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}=2.13 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
Therefore, the mass of the charged particle is

$$
\begin{aligned}
m & =\frac{2.008 \times 10^{-18} \times\left(1-0.710^{2}\right)^{1 / 2}}{2.13 \times 10^{8}} \mathrm{~kg} \\
& =6.6414 \times 10^{-27} \mathrm{~kg} .
\end{aligned}
$$

In units of mass of a proton, the mass of the charged particle of charge $2 e$ is

$$
\frac{m}{m_{p}}=\frac{6.6414 \times 10^{-27}}{1.67 \times 10^{-27}}=3.97
$$

Therefore, the nuclear particle is an alpha particle.

