434.

Problem 34.21 (RHK)

A proton, a deuteron, and an alpha particle with the same kinetic energy enter a region of uniform magnetic field, moving at right angles to $\stackrel{\rightharpoonup}{B}$. The proton moves in a circle of radius r_{H}. In terms of r_{H}, we have to find the radii of (a) the deuteron path and (b) the alpha particle path.

Solution:

Let the mass of proton be m_{H} and its charge be e,
The mass of a deuteron is, $m_{2_{H}}=2 m_{H}$, and its charge is also e, as deuteron is an isotope of hydrogen.
The mass of an alpha particle is, $m_{4_{H e}}=4 m_{H}$ and its charge is $2 e$.

It is given that the proton, deuteron and the alpha particle have the same kinetic energy K. The speed, v, of a particle of mass, m, and kinetic energy K is determined by the relation
$\frac{1}{2} m v^{2}=K$,
or
$v=\sqrt{\frac{2 K}{m}}$.
Therefore,
$v_{H}=\sqrt{\frac{2 K}{m_{H}}}$,
$v_{2_{H}}=\sqrt{\frac{2 K}{m_{2_{H}}}}=\sqrt{\frac{2 K}{2 m_{H}}}=\frac{1}{\sqrt{2}} v_{H}$,
and
$v_{4_{H e}}=\sqrt{\frac{2 K}{m_{4_{H e}}}}=\sqrt{\frac{2 K}{4 m_{H}}}=\frac{1}{2} v_{H}$
The radius of the circular orbit of a charged particle of mass, m, charge, q, velocity, $\stackrel{\rightharpoonup}{v}$, in magnetic field $\stackrel{1}{B}$, perpendicular to \hat{v} is determined by the relation $m \frac{v^{2}}{r}=q v B$,
or
$r=\frac{m \nu}{q B}$.
We, therefore, find that in terms of
$r_{H}=\frac{m_{H} v_{H}}{e B}$,
the radius of the deuteron orbit will be

$$
r_{2_{H}}=\frac{m_{2_{H}} v_{2_{H}}}{e B}=\frac{2 m_{H} \times v_{H} / \sqrt{2}}{e B}=\sqrt{2} r_{H} \text {, }
$$

and the radius of the alpha particle will be
$r_{4_{H e}}=\frac{m_{4_{H e}} v_{4}}{2 e B}=\frac{4 m_{H} \times v_{H} / 2}{2 e B}=r_{H}$.

