430.

Problem 34.13 (RHK)

An electron is accelerated from rest by a potential difference of 350 V . It then enters a uniform magnetic field of magnitude 200 mT , its velocity being at right angles to the field. We have to calculate (a) the speed of the electron and (b) radius of its path in the magnetic field.

Solution:

Mass of an electron, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$.
Kinetic energy of 350 eV that electron acquires a potential difference of 350 V is much less than its rest mass energy, which is 0.5 MeV . We, therefore, will treat this problem as non-relativistic. The speed v of the electron can be calculated from its kinetic energy.

$$
\frac{1}{2} m_{e} v^{2}=350 \mathrm{eV}=350 \times 1.6 \times 10^{-19} \mathrm{~J}=5.6 \times 10^{-17} \mathrm{~J}
$$

Therefore,

$$
v=\sqrt{\frac{2 \times 5.6 \times 10^{-17}}{9.11 \times 10^{-31}}} \mathrm{~m} \mathrm{~s}^{-1}=1.108 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} .
$$

Let R be the radius of the circular orbit of the electron as it moves in a uniform magnetic field at right angles to the direction of its velocity. Equating the centripetal acceleration with the force on the moving electron due to the magnetic field, we get

$$
\frac{m_{e} v^{2}}{R}=e v B
$$

or

$$
\begin{aligned}
R=\frac{m_{e} v}{e B}=\frac{9.11 \times 10^{-31} \times 1.108 \times 10^{7}}{1.6 \times 10^{-19} \times 200 \times 10^{-3}} \mathrm{~m} & =3.15 \times 10^{-4} \mathrm{~m} \\
& =0.315 \mathrm{~mm}
\end{aligned}
$$

