426.

Problem 34.7 (RHK)

An electron in a uniform magnetic field has a velocity $\overset{\mathbf{r}}{v} = (40\hat{i} + 35\hat{j}) \text{ km s}^{-1}$. It experiences a force $\overset{\mathbf{r}}{F} = (-4.2\hat{i} + 4.8\hat{j}) \text{ fN}$. If $B_x = 0$, we have to calculate the magnetic field.

Solution:

The force on an electron, charge e, velocity \dot{v} , in magnetic field \dot{B} is given by the equation $\dot{F} = e_v^r \times \dot{B}$.

Data of the problem are

$$\stackrel{\mathbf{r}}{v} = \left(40\hat{i} + 35\,\hat{j}\right) \,\mathrm{km}\,\mathrm{s}^{-1},$$

$$\stackrel{\mathbf{l}}{F} = \left(-4.2\hat{i} + 4.8\,\hat{j}\right) \,\mathrm{fN} = \left(-4.2\hat{i} + 4.8\,\hat{j}\right) \times 10^{-15} \,\mathrm{N}.$$

As $B_x = 0$, we will write the magnetic field as $\stackrel{\Gamma}{B} = \left(B_y \hat{j} + B_z \hat{k}\right).$

We thus have the vector equation

$$(-4.2\hat{i} + 4.8\hat{j}) \times 10^{-15} \text{ N} = e(40\hat{i} + 35\hat{j}) \text{ km s}^{-1} \times (B_y\hat{j} + B_z\hat{k}).$$
 (A)

We will use the properties of the cross- product

$$\hat{i} \times \hat{j} = \hat{k}; \ \hat{j} \times \hat{k} = \hat{i}; \ \hat{k} \times \hat{i} = \hat{j};$$

and

$$\stackrel{\mathbf{r}}{a} \times \stackrel{\mathbf{i}}{b} = -\stackrel{\mathbf{i}}{b} \times \stackrel{\mathbf{r}}{a}$$
; and $\stackrel{\mathbf{r}}{a} \times \stackrel{\mathbf{r}}{a} = 0$,

and rewrite equation (A) as

$$(-4.2\hat{i}+4.8\hat{j})\times 10^{-15} \text{ N} = (40B_y\hat{k}-40B_z\hat{j}+35\hat{i}B_z)e \text{ km s}^{-1}.$$

 $\therefore B_y = 0,$

and

$$B_z = \frac{4.2 \times 10^{-15}}{1.6 \times 10^{-19} \times 35} \times \frac{N}{C \text{ km s}^{-1}} = 7.5 \times 10^2 \text{ T}.$$

It may be noted that the \hat{j} -equation is consistent with the \hat{i} -equation, as it also gives

$$B_z = \frac{4.8 \times 10^{-15}}{1.6 \times 40 \times 10^{-19}} \times \frac{N}{C \text{ km s}^{-1}} = 7.5 \times 10^2 \text{ T}.$$

Therefore, the magnetic field is $\dot{B} = 0.75\hat{k}$ kT.

