423.

Problem 33.58 (RHK)

An initially uncharged capacitor C is fully charged by a constant emf E in series with a capacitor R. (a) We have to show that the final energy stored in the capacitor is half the energy supplied by the emf. (b) By direct integration of $i^{2} R$ over the charging time, we have to show that the internal energy dissipated by the resistor is also half the energy supplied by the emf.

Solution:

(a)

The charging equation for a capacitor of capacitance C connected with a resistor or resistance R to a source of emf E is
$q(t)=q_{0}\left(1-e^{-t / R c}\right)$,
where
$q_{0}=C \mathrm{E}$.

By differentiating $q(t)$ with respect to the variable t, we will obtain the current as a function of time, $i(t)$, during the charging process. That is
$i(t)=\frac{d q(t)}{d t}=-q_{0}\left(-\frac{1}{R C}\right) e^{-t / R C}=\frac{q_{0}}{R C} e^{-t / R C}=\frac{\mathrm{E}}{R} e^{-t / R C}$.
The energy supplied by the emf in charging the capacitor fully will be given by the integral
$U=\int_{0}^{\infty} \mathrm{E} i(t) d t=\int_{0}^{\infty} \frac{\mathrm{E}^{2}}{R} e^{-t / R c} d t=\frac{\mathrm{E}^{2}}{R}(-R C)\left[e^{-t / R c}\right]_{0}^{\infty}$ $=C E^{2}$.

The final energy stored in the capacitor is
$U_{C}=\frac{q_{0}^{2}}{2 C}=\frac{(C \mathrm{E})^{2}}{2 C}=\frac{C \mathrm{E}^{2}}{2}$.
Therefore, it is half the energy supplied by the source of emf.
(b)

We next calculate the internal energy dissipated in the resistor.

Joule heat per second is
$P(t)=i^{2}(t) R$.

Therefore, the total energy dissipated in the resistor during the charging process will be given by integrating $P(t)$ over the charging time. That is

$$
\begin{aligned}
U_{R}=\int_{0}^{\infty} P(t) d t=\int_{0}^{\infty} i^{2}(t) R d t & =\int_{0}^{\infty} \frac{\mathrm{E}^{2}}{R^{2}} e^{-2 t / R c} R d t \\
& =\frac{\mathrm{E}^{2}}{R} \int_{0}^{\infty} e^{-2 t / R c} d t \\
& =\frac{\mathrm{E}^{2}}{R}\left(-\frac{R C}{2}\right)\left[e^{-2 t / R c}\right]_{0}^{\infty}
\end{aligned}
$$

$$
=\frac{E^{2} C}{2}
$$

This is also equal to half the energy supplied by the emf in charging the capacitor.

