## 415.

## Problem 33.40 (RHK)

A simple ohmmeter is made by connecting a $1.50-\mathrm{V}$ flashlight battery in series with a resistor $R$ and a 1.00mA ammeter, as shown in the figure. $R$ is adjusted so that when the circuit elements are shorted together the meter deflects its full-scale value of 1.00 mA . We have to calculate the values of the resistances across the terminal which would give a deflection of (a) 10\%, (b) $50 \%$, and (c) $90 \%$ of full scale. (d) If the ammeter has a resistance of $18.5 \Omega$ and the internal resistance of the battery is negligible, we have to calculate the value of $R$.


## Solution:

In the figure circuit diagram of an ohmmeter has been drawn. When the clip leads are shorted together, it is given that the $1.0-\mathrm{mA}$ ammeter shows full scale deflection. That is a 1.0 mA current is flowing through
the circuit. Assuming that the ammeter and the battery have negligible resistances, the value of the resistance $R$ will have to be
$R=\frac{1.5 \mathrm{~V}}{1.0 \times 10^{-3} \mathrm{~A}}=1500 \Omega$.
(b)

If the ammeter shows $10 \%$ deflection of the full scale, the current in the circuit will be 0.1 mA . Therefore, the external resistance, $R_{x}$, across the leads will be as given by the relation
$R_{x}+1500 \Omega=\frac{1.5 \mathrm{~V}}{0.1 \times 10^{-3} \mathrm{~A}}=15000 \Omega$,
or
$R_{x}=13,500 \Omega=13.5 \mathrm{k} \Omega$.
(c)

If the ammeter shows a $50 \%$ deflection of the full scale, the current in the circuit will be 0.5 mA . The resistance,
$R_{x}$, will be given by the relation
$R_{x}+1500 \Omega=\frac{1.5 \mathrm{~V}}{0.5 \times 10^{-3} \mathrm{~A}}=3000 \Omega$,
or
$R_{x}=1500 \Omega=1.5 \mathrm{k} \Omega$.
(d)

If the ammeter shows a $90 \%$ deflection of the full scale, the current in the circuit will be 0.9 mA . The resistance, $R_{x}$, will be given by the relation
$R_{x}+1500 \Omega=\frac{1.5 \mathrm{~V}}{0.9 \times 10^{-3} \mathrm{~A}}=1666 \Omega$,
or
$R_{x}=166.6 \Omega$.
(e)

If the ammeter has a resistance of $18.5 \Omega$ and the internal resistance of the battery is negligible, the required value of $R$ will be given by the equation $R+18.5 \Omega=\frac{1.5 \mathrm{~V}}{1.0 \times 10^{-3} \mathrm{~A}}=1500 \Omega$,
or
$R=1481.5 \Omega$.

