411.

Problem 33.33 (RHK)

In the circuit shown in the figure, we have to find the current flowing through the ammeter A, assuming that A has zero resistance.

Solution:

It is a multi-loop circuit. We have indicated currents in different branches of the circuit by taking care of conservation of charge. We have three unknown currents, i, i_{1} and i_{3}, as $i_{2}=i-i_{1}$.

Considering the circuit abcde and applying Kirchoff's law, we get
$-2 R i_{1}-i_{3} R+\mathrm{E}=0$,
or
$2 R i_{1}+i_{3} R=\mathrm{E}$.
Applying Kirchoff's law to loops $b f g c$ and $c g h d$, we get
$-\left(i-i_{1}\right) R+2 R i_{1}=0$, or $i_{1}=\frac{i}{3}$,
and
$-\left(i-i_{3}\right) R+i_{3} R=0$, or $i_{3}=\frac{i}{2}$.
We now have three linear equations connecting i_{1}, i_{3} and
i. We solve them and find
$i=\frac{6}{7} \frac{\mathrm{E}}{R}, i_{1}=\frac{2}{7} \frac{\mathrm{E}}{R}$, and $i_{3}=\frac{3 \mathrm{E}}{2}(7) R$
Therefore, the current inthe ampleter, $\left|i_{1}-i_{3}\right|$, will be $\frac{3}{7} \frac{\mathrm{E}}{R}-\frac{2}{7} \frac{\mathrm{E}}{R}=\frac{\mathrm{E}}{7 R}$.

