404.

Problem 33.9 (RHK)

A section of the circuit $A B$ (see figure) absorbs 53 W of power when a current $i=1.20$ A passes through it in the indicated direction. (a) We have to find the potential difference between A and B. (b) Assuming that the element C does not have any internal resistance, we have to find the emf. (c) We have to answer which terminal, left or right, is positive.

Solution:

(a)

The section of the circuit $A B$ shown in the figure absorbs
53.0 W of power when a current $i=1.20 \mathrm{~A}$ passes
through it. We have to find the potential difference between A and B.

Joule heat in the resistance $R=19 \Omega$ will be

$$
P_{1}=i^{2} R=1.20^{2} \times 19 \mathrm{~W}=27.36 \mathrm{~W} .
$$

Therefore, the power absorbed in the element C will be

$$
P_{2}=P-P_{1}=(53.0-27.36) \mathrm{W}=25.60 \mathrm{~W} .
$$

(b) and (c)

As the device C is without internal resistance, it has to be a source of emf. The energy that is being absorbed by C is getting converted into chemical energy through the charging process. Therefore, the left terminal of C will be positive. The emf of C can be found from the relation $P_{2}=\mathrm{E} i$,
and
$\mathrm{E}=\frac{P_{2}}{i}=\frac{25.60}{1.20} \mathrm{~V}=21.37 \mathrm{~V}$.
The potential difference A and B will, therefore, be
$-19.0 \times 1.2(\Omega \mathrm{~A})-21.37 \mathrm{~V}=-44.17 \mathrm{~V}$.
That is B is at -44.17 V , if A is at 0.0 V .

