403.

Problem 33.7 (RHK)

For the circuit shown in the figure, we have to find (a) the value of R so that the current in the circuit is 50 $m A$. We may take $\mathrm{E}_{1}=2.0 \mathrm{~V}, \mathrm{E}_{2}=3.0 \mathrm{~V}$, and $r_{1}=r_{2}=3.0 \Omega$. (b) We have to find the rate at which internal energy appears in R.

Solution:
In the circuit shown in the figure
$\mathrm{E}_{1}=2.0 \mathrm{~V}$,
$\mathrm{E}_{2}=3.0 \mathrm{~V}$,
and
$r_{1}=r_{2}=3.0 \Omega$.
As
$\mathrm{E}_{2}>\mathrm{E}_{1}$, the direction of the current in the circuit will be counter-clockwise. Let the current in the circuit be $i \mathrm{~A}$. We go round the circuit in the counter-clockwise direction and write the algebraic equation for the potential changes. We have
$-2.0 \mathrm{~V}-i r_{1}-i R-i r_{2}+3.0 \mathrm{~V}=0$.
As $r_{1}=r_{2}=3.0 \Omega$, we have
$(6+R) i \Omega \mathrm{~A}=1 \mathrm{~V}$.
We want current, i, in the circuit to be 50 mA .
Therefore, the value of R should be
$R=\left(\frac{1}{50 \times 10^{-3}}-6\right) \Omega=14 \Omega$.
(b)

Rate at which internal energy appears in R will be the Joule heat, and is given by the equation

$$
P=i^{2} R=\left(50 \times 10^{-3}\right)^{2} \times 14 \mathrm{~W}=35 \mathrm{~mW} .
$$

