402.

Problem 33.6 (RHK)

A gasoline gauge for an automobile is shown schematically in the figure. The indicator (on the dashboard) has a resistance of 10 Ω . The tank is simply a float connected to a resistor that has a resistance of 140 Ω when the tank is empty, 20 Ω when it is full, and varies linearly with the volume of gasoline. We have to find the current in the circuit when the tank is (a) empty,

(b) *half full*, *and* (c) *full*.

Solution:

We note the data of the problem:

E=12 V, $R_{\text{indicator}} = 10 \Omega$, $R_{\text{tank}} (\text{empty}) = 140 \Omega$, $R_{\text{tank}}(\text{full}) = 20 \ \Omega.$

We will apply Ohm's law in finding the current in the circuit with different total resistances.

(a)

Resistance in the circuit when the tank is empty will be $R = (140+10) \Omega = 150 \Omega$. Current in the circuit when the tank is empty will be

$$i(\text{tank empty}) = \frac{12}{150} \text{ A} = 0.08 \text{ A}.$$

(b)

Resistance in the circuit varies linearly with the volume of gas in the tank. Let the volume of the full tank be V. From the values of $R_{indicator} = 10 \Omega$, and

 $R_{\text{tank}}(\text{full}) = 20 \ \Omega$, we note that the linear equation giving the resistance as a function of volume of gas in the tank will be

$$R(\Omega) = -\frac{120}{V}v + 140.$$

When the tank is half full, the volume of the gas will be V/2, and the resistance of the fuel tank will be $R = 80 \Omega$. The total resistance in the circuit in this situation will be $R(half full) = 90 \Omega$.

$$i(\tanh \text{half full}) = \frac{12}{90} \text{ A} = 0.133 \text{ A}.$$

(c)

When the tank is full the total resistance in the circuit will be

 $R(\text{full}) = 30 \ \Omega.$

And

$$i(\tanh \text{full}) = \frac{12}{30} \text{ A} = 0.40 \text{ A}.$$

