399.

Problem 32.59 (RHK)

A 420-W immersion heater is placed in a pot containing 2.10 litres of water at $18.5^{\circ} \mathrm{C}$. We have to find (a) the time required for bringing the water to boiling temperature, assuming that 77.0% of the available energy is absorbed by the water. We will calculate how much longer will it take for half the water to boil away.

Solution:

(a)

Specific heat capacity of water is
$c=4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
Therefore, the amount of heat required for boiling 2.10
litres of water from $18.5^{\circ} \mathrm{C}$ will be
$Q=2.10 \times 4190 \times(100-18.5) \mathrm{J}=7.17 \times 10^{5} \mathrm{~J}$.
Power of the immersion heater is given as
$P=420 \mathrm{~W}$.

As only 77% of the available energy is absorbed by the water, the Joule heat absorbed by the water per second will be

$$
P^{\prime}=420 \times \frac{77}{100} \mathrm{~J} \mathrm{~s}^{-1}=323.4 \mathrm{~J} \mathrm{~s}^{-1} .
$$

Therefore, the amount of time required for boiling the given amount of water using the immersion heater will be
$t=\frac{7.17 \times 10^{5}}{323.4} \mathrm{~s} ; 37$ minutes.
(b)

For answering the next part of the problem, we note that the heat of vaporisation of water is
$L_{v}=2256 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1}$.
Therefore, the amount of heat required for vaporisation of 1.05 litres of water will be
$Q^{\prime}=1.05 \times 2256 \times 10^{3} \mathrm{~J}$.
The additional time required for boiling away half the quantity of water will be
$t^{\prime}=\frac{1.05 \times 2256 \times 10^{3}}{323.4} \mathrm{~s}=122$ minutes .

