398.

Problem 32.61 (RHK)

A potential difference V is applied to a wire of cross-sectional area A, length L, and conductivity σ. We want to change the applied potential difference and draw out the power so the power dissipated is increased by a factor of 30 and the current is increased by a factor of 4 . We have to find the new values of (a) the length and (b) the cross-sectional area.

Solution:

Let the original resistance of the wire be R. When a potential difference V is applied to the ends of the wire the current in it will be
$i=\frac{V}{R}$,
and the power dissipated will be given by $P=i^{2} R$.

Wire is stretched and potential difference is applied so that the current through the wire becomes i^{\prime}, such that $i^{\prime}=4 i$.

Let the changed resistance R^{\prime} of the wire that ensures that when the current is i^{\prime} the power dissipated becomes
$P^{\prime}=i^{\prime 2} R^{\prime}=30 i^{2} R$,
and
$16 i^{2} R^{\prime}=30 i^{2} R$.
This gives
$R^{\prime}=\frac{15}{8} R$.
As the wire is stretched its volume remains unchanged.
Therefore,
$A^{\prime} L^{\prime}=A L$.
Resistance of a wire of cross-sectional area A, length L, and conductivity of the material σ is given by

$$
R=\frac{L}{\sigma A} .
$$

Therefore, we have the relation
$\frac{L^{\prime}}{\sigma A^{\prime}}=\frac{15}{8} \times \frac{L}{\sigma A}$,
or
$L^{\prime}=\frac{15}{8}\left(\frac{A^{\prime}}{A}\right) L$.
Using the result
$A^{\prime} L^{\prime}=A L$,
we have

$$
A^{\prime}=\sqrt{\frac{8}{15}} A=0.730 A
$$

and

$$
L^{\prime}=\sqrt{\frac{15}{8}} L=1.37 L
$$

