397.

Problem 32.57 (RHK)

Two isolated conducting spheres, each of radius 14.0 cm , are charged to potentials of 240 and 440 V and are then connected by a fine wire. We have to calculate the internal energy developed in the wire.

Solution:

Potential difference with respect to infinity of a conducting sphere of radius r and total charge q on its surface is given by

$$
V=\frac{q}{4 \pi \varepsilon_{0} r} .
$$

Therefore, the capacitance of a conductor of radius r is $C=\frac{q}{V}=4 \pi \varepsilon_{0} r$.

The other fact that we will use in answering this problem is that energy associated with a condenser of capacitance C and charge q is
$U=\frac{q^{2}}{2 C}=\frac{1}{2} C V^{2}$.

Therefore, charge on the conductor at 240 V potential will be

$$
q_{1}=C V=4 \pi \varepsilon_{0} r V=\frac{14.0 \times 10^{-2} \times 240}{8.99 \times 10^{9}} \mathrm{C}=3.737 \times 10^{-9} \mathrm{C}
$$

Similarly, the charge on the conductor at 440 V potential will be
$q_{2}=\frac{14 \times 10^{-2} \times 440}{8.99 \times 10^{9}} \mathrm{C}=6.852 \times 10^{-9} \mathrm{C}$.

After the two charged conductors have been connected by a fine wire, they will have equal charge as they are of equal radius. So the charge on each conductor after they have been connected will be

$$
q=\frac{1}{2}\left(q_{1}+q_{2}\right)=\frac{1}{2}(3.737+6.852) \times 10^{-9} \mathrm{C}=5.294 \times 10^{-9} \mathrm{C} .
$$

The common potential on the two conductors will be

$$
\begin{aligned}
V=\frac{q}{C}=\frac{5.294 \times 10^{-9}}{4 \pi \varepsilon_{0} r} & =\frac{8.99 \times 10^{9} \times 5.294 \times 10^{-9}}{14.0 \times 10^{-2}} \mathrm{~V} \\
& =339.9 \mathrm{~V}
\end{aligned}
$$

The change in energy of the two conductors after they are connected by a fine wire will be

$$
\begin{aligned}
W=U_{i}-U_{f} & =\frac{1}{2} C\left(V_{1}^{2}+V_{2}^{2}-2 V^{2}\right) \\
& =\frac{14.0 \times 10^{-2}}{2 \times 8.99 \times 10^{9}}\left(240^{2}+440^{2}-2 \times 340^{2}\right) \mathrm{J} \\
& =1.559 \times 10^{-7} \mathrm{~J} \\
& =155.9 \mathrm{~nJ} .
\end{aligned}
$$

From the conservation of energy, we note that the energy developed in the wire will be 156 nJ .

