395.

Problem 32.51 (RHK)

An electron linear accelerator produces a pulsed beam of electrons. The pulse current is 485 mA and the pulse duration is 95.0 ns . (a) We have to find the number of electrons in each pulse; (b) average current for a machine operating at 520 pulses s^{-1}; if the electrons are accelerated to an energy of 47.7 MeV , we have to find the values of the average and the peak power outputs of the accelerator.

Solution:

(a)

In the linear accelerator the pulse current is 485 mA and the pulse duration is 95.0 ns . Therefore, the total charge contained in one pulse will be

$$
q=485 \times 10^{-3} \times 95.0 \times 10^{-9} \mathrm{C}=4.6075 \times 10^{-8} \mathrm{C} .
$$

Charge of one electron is $e=1.6 \times 10^{-18} \mathrm{C}$. Therefore, the number of electrons in one pulse will be $n=\frac{q}{e}=\frac{4.6075 \times 10^{-8}}{1.6 \times 10^{-19}}=2.879 \times 10^{11}$.
(b)

The average current for a machine operating at 520 pulses s^{-1} will be $i=520 q=520 \times 4.6075 \times 10^{-8} \mathrm{~A}=2.395 \times 10^{-5} \mathrm{~A}=23.95 \mu \mathrm{~A}$.
(c)

The electrons are accelerated to an energy of 47.7 MeV .
That is the accelerating potential is $47.7 \times 10^{6} \mathrm{~V}$. The average output power of the accelerator will, therefore, be

$$
\begin{aligned}
P_{\text {average }} & =\text { average current } \times \text { accelerating voltage } \\
& =23.95 \times 10^{-6} \times 47.7 \times 10^{6} \mathrm{~W} \\
& =1.142 \mathrm{~kW} .
\end{aligned}
$$

(d)

The peak power of the accelerator will be

$$
\begin{aligned}
P_{\text {peak }} & =\text { pulse current } \times \text { acceleating voltage } \\
& =485 \times 10^{-3} \times 47.7 \times 10^{-6} \mathrm{~W} \\
& =23.13 \mathrm{MW}
\end{aligned}
$$

