394.

Problem 32.41 (RHK)

For a hypothetical electronic device, the potential difference V in volts, measured across the device, is related to the current i in mA by $V=3.55 i^{2}$. (a) We have to find the resistance when the current is 2.40 mA . (b) We have to find the value of the current when the resistance is equal to 16.0Ω.

Solution:

Important point to note in answering this problem is to distinguish between the Ohm's law and the definition of the resistance. Resistance of a circuit element, R, is defined to be the ratio of the potential difference across the element, V, and the current, i, flowing through it.

That is

$$
R=\frac{V}{i} .
$$

Relation between the potential difference V and the current i in a hypothetical electronic device is given to be $V=0.355 i^{2}$,
where the current i is measured in mA . Therefore,
$R=0.355 i\left(\frac{\text { volt }}{10^{-3} \mathrm{~A}}\right)=0.355 i(\mathrm{~mA}) \mathrm{k} \Omega$.
Therefore, for $i=2.40 \mathrm{~mA}$,
$R=3.55 \times 2.40 \mathrm{k} \Omega=8.52 \mathrm{k} \Omega$.
Resistance offered by the element will be 16Ω when the current is
$i=\frac{16}{3.55 \times 10^{-3}} \mathrm{~mA}=4.51 \mu \mathrm{~A}$.

