Problem 32.41 (RHK)

For a hypothetical electronic device, the potential difference V in volts, measured across the device, is related to the current i in mA by $V = 3.55i^2$. (a) We have to find the resistance when the current is 2.40 mA. (b) We have to find the value of the current when the resistance is equal to 16.0Ω .

Solution:

Important point to note in answering this problem is to distinguish between the Ohm's law and the definition of the resistance. Resistance of a circuit element, R, is defined to be the ratio of the potential difference across the element, V, and the current, i, flowing through it. That is

$$R = \frac{V}{i}$$
.

Relation between the potential difference V and the current i in a hypothetical electronic device is given to be $V = 0.355i^2$,

where the current i is measured in mA. Therefore,

$$R = 0.355i \left(\frac{\text{volt}}{10^{-3} \text{A}} \right) = 0.355i \left(\text{mA} \right) \text{k}\Omega.$$

Therefore, for i = 2.40 mA,

$$R = 3.55 \times 2.40 \text{ k}\Omega = 8.52 \text{ k}\Omega.$$

Resistance offered by the element will be 16Ω when the current is

$$i = \frac{16}{3.55 \times 10^{-3}}$$
 mA = 4.51 μ A.

