391.

Problem 32.33 (RHK)

When 115 V is applied across a 9.66-m-long wire, the current density is $1.42 \mathrm{~A} \mathrm{~cm}^{-2}$. We have to calculate the conductivity of the wire material.

Solution:

We will assume that the electric field is uniform in the wire. As the potential difference across the ends of a wire of length 9.66 m is 115 V , the electric field in the wire will be

$$
E=\frac{V}{l}=\frac{115}{9.66} \mathrm{~V} \mathrm{~m}^{-1}=11.90 \mathrm{~V} \mathrm{~m}^{-1} .
$$

The current density, j, and electric field, E, are related as $j=\sigma E$,
where σ is the conductivity of the material. The current density in the wire is $1.42 \mathrm{~A} \mathrm{~cm}^{-2}=1.42 \times 10^{4} \mathrm{~A} \mathrm{~m}^{-2}$.

Therefore, conductivity of its material will be

$$
\sigma=\frac{j}{E}=\frac{1.42 \times 10^{4}}{11.9}(\Omega \mathrm{~m})^{-1}=1190(\Omega \mathrm{~m})^{-1} .
$$

