391.

Problem 32.33 (RHK)

When 115 V is applied across a 9.66-m-long wire, the current density is 1.42 A cm^{-2} . We have to calculate the conductivity of the wire material.

Solution:

We will assume that the electric field is uniform in the wire. As the potential difference across the ends of a wire of length 9.66 m is 115 V, the electric field in the wire will be

$$E = \frac{V}{l} = \frac{115}{9.66}$$
 V m⁻¹ = 11.90 V m⁻¹.

The current density, j, and electric field, E, are related as $j = \sigma E$,

where σ is the conductivity of the material. The current density in the wire is 1.42 A cm⁻² = 1.42×10^4 A m⁻². Therefore, conductivity of its material will be

$$\sigma = \frac{j}{E} = \frac{1.42 \times 10^4}{11.9} \ (\Omega \text{ m})^{-1} = 1190 \ (\Omega \text{ m})^{-1}.$$