390.

Problem 32.31 (RHK)

An electrical cable consists of 125 strands of fine wire, each having $2.65-\mu \Omega$ resistance. The same potential difference is applied between the ends of each strand and results in a total current of 750 mA . (a) We have to find the current in each strand; (b) the applied potential difference; and (c) the resistance of the cable.

Solution:

(a)

The given electrical cable consists of 125 strands of wire.
Resistance, r, of each strand is
$r=2.65 \mu \Omega=2.65 \times 10^{-6} \Omega$.
The total current flowing through the cable is
$I=750 \mathrm{~mA}=750 \times 10^{-3} \mathrm{~A}$.
Therefore, current flowing in each strand of wire will be $i=\frac{750}{125} \mathrm{~mA}=6.0 \mathrm{~mA}$.
(b)

As the resistance of each strand of wire is
$r=2.65 \mu \Omega=2.65 \times 10^{-6} \Omega$, the potential difference across each strand will be
$V=$ ir $=6 \times 10^{-3} \times 2.65 \times 10^{-6} \mathrm{~V}=15.9 \times 10^{-9} \mathrm{~V}=15.9 \mathrm{nV}$.
(c)

The resistance of the cable will be
$R=\frac{V}{I}=\frac{15.9 \times 10^{-9}}{750 \times 10^{-3}}=21.2 \times 10^{-9} \Omega=21.2 \mathrm{n} \Omega$.

