386.

Problem 32.13(RHK)

We have to calculate the time that electrons take to get from a car battery to the starting motor. We may assume that the current is 115 A and electrons travel through copper wire with cross-sectional area $31.2 \mathrm{~mm}^{2}$ and length 85.5 cm .

Solution:

In copper on an average there is nearly one conduction electron per atom.

The density of copper, $\rho_{C u}=8.96 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$.
The molar mass of copper, $M_{C u}=63.5 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$.
Let the number of electrons per cubic meter in copper metal be n. Then, we have
$\frac{n}{N_{A}}=\frac{\rho_{C u}}{M_{C u}}$,
where N_{A} is the Avogadro number. We find

$$
\begin{aligned}
n & =\frac{6.02 \times 10^{23} \times 8.96 \times 10^{3}}{63.5 \times 10^{-3}} \text { electrons } \mathrm{m}^{-3} \\
& =8.49 \times 10^{28} \text { electrons } \mathrm{m}^{-3} .
\end{aligned}
$$

Let the drift speed of the electrons in the copper wire be v_{d}. Then from the definition of current that it is the charge flow through the wire per second, we have $i=A v_{d} n e$,
where A is the cross-sectional area of the wire and n is the number of conduction electrons per unit volume.

Therefore, from the data of the problem we calculate the drift speed v_{d}. It will be

$$
\begin{aligned}
v_{d}=\frac{i}{\text { Ane }} & =\frac{115}{31.2 \times 10^{-6} \times 8.49 \times 10^{28} \times 1.6 \times 10^{-19}} \mathrm{~m} \mathrm{~s}^{-1} \\
& =0.27 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
$$

Length of the copper wire from the connecting battery to the motor is 85.5 cm . Therefore, the time that electrons will take in reaching the motor from the car battery will be
$t=\frac{0.855}{0.271 \times 10^{-3} \times 60}$ minutes $=52.5$ minutes.

