
 

 

 

372. 

 

Problem 31.39 (RHK) 

 

 We have to calculate (a) the energy density of the 

electric field at a distance r from an electron (presumed 

to be a particle) at rest. (b) We will assume that the 

electron is not a point but a sphere of radius R over 

whose surface the electron charge is uniformly 

distributed. We will determine the energy associated with 

the external electric field in vacuum of the electron as a 

function of R. (c) We will now associate this energy with 

the mass of the electron, using 2

0E mc= , and calculate 

the value for R. We will evaluate this radius numerically; 

it is often called the classical radius of the electron. 

 

Solution: 

Assuming that electron is a charged sphere of radius R 

over whose surface charge e is uniformly distributed, 

electric field for r R  will be 
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Therefore, energy density of the electric field in the 

space outside the electron will be 
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Therefore, the total energy associated with an electron of 

radius R and charge e will be 
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We now associate this energy with the mass of the 

electron. That is 
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which is called the classical radius of the electron. 

We next calculate its numerical value 
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