369.

Problem 31.37 (RHK)

A parallel-plate capacitor has plates of area A and separation d and is charged to a potential difference V. The charging battery is then disconnected and the plates are pulled apart until their separation is $2 d$. We have to derive in terms of A, d, and V for (a) the new potential difference, (b) the initial and final stored energy, and (c) the work required for separating the plates.

Solution:

(a)

A parallel-plate capacitor has plates of area A and separation d and it is charged to a potential difference V. The capacitance of a parallel plate capacitor of plate area A and separation d is $C=\frac{\varepsilon_{0} A}{d}$.

As the capacitor is charged by connecting it to a battery of voltage V, the magnitude of the charge on the plates of the capacitor will be
$q=C V=\frac{\varepsilon_{0} A}{d} V$.
Now the capacitor is disconnected from the battery. The plates of the capacitor are pulled apart until their separation is $2 d$. Now the capacitance of the capacitor will become

$$
C^{\prime}=\frac{\varepsilon_{0} A}{2 d}
$$

As the charge on the capacitor plates remains unchanged when its plates are separated, the potential difference across the plates will change to

$$
V^{\prime}=\frac{q}{C^{\prime}}=2 V .
$$

(b)

The stored energy in a capacitor of capacitance C with potential difference V is given by

$$
U=\frac{1}{2} C V^{2} .
$$

Therefore, the initial stored energy is
$U_{i}=\frac{\varepsilon_{0} A V^{2}}{2 d}$,
and the final stored energy will be
$U_{f}=\frac{1}{2} C^{\prime} V^{\prime 2}=\frac{\varepsilon_{0} A V^{2}}{d}$.
(c)

The work required for separating the plates will be
$W=U_{f}-U_{i}=\frac{\varepsilon_{0} A V^{2}}{2 d}$.

